Solutions to Exercise Session, March 14, 2016

1. Level curves. Find the equation of the level curve of the function $f(x, y)$ that passes through the given point.
(a) $f(x, y)=16-x^{2}-y^{2},(2 \sqrt{2}, \sqrt{2})$
(b) $f(x, y)=\sqrt{x^{2}-1},(1,0)$
(c) $f(x, y)=\int_{x}^{y} \frac{d \theta}{\sqrt{1-\theta^{2}}},(0,1)$
2. Continuous functions.
(a) Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{a}, \mathbf{b} \neq \mathbf{0}$. Show that the function $f(\mathbf{x})=\langle\mathbf{a}, \mathbf{x}\rangle \cdot\langle\mathbf{b}, \mathbf{x}\rangle$ is continuous for all $\mathbf{x} \in \mathbb{R}^{n}$.
(b) For $A \in M_{n, n}(\mathbb{R})$ let $b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bilinear form given by $b(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, A \mathbf{y}\rangle$. Show that b is continuous for all $\binom{\mathbf{x}}{\mathbf{y}} \in \mathbb{R}^{2 n}$.
(c) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{x})=$ $\sum_{k=1}^{n} g\left(x_{k}\right)$, where x_{k} denotes the $\mathrm{k}^{t h}$ component of the vector $\mathbf{x}, x_{k}=\left\langle\mathbf{e}_{k}, \mathbf{x}\right\rangle$, is a continuous function for all $\mathbf{x} \in \mathbb{R}^{n}$.

3. Limits of real functions.

(a) Calculate

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

(b) Calculate

$$
\lim _{(x, y) \rightarrow(0,0)} x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

(c) Calculate

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{-\frac{1}{\sqrt{x^{2}+y^{2}}}}}{x^{2}+y^{2}}
$$

(d) Show that the function

$$
f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}
$$

has no limit as (x, y) approaches $(0,0)$. In particular show the value of the limit take varies between -1 and 1 along curves $y=k x^{2}$.
(e) Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the continuous function defined by

$$
f(x, y)= \begin{cases}\frac{\sin (x y)}{x y} & \text { if } x y \neq 0, \\ 1 & \text { if } x y=0 .\end{cases}
$$

Show that f is partially differentiable and give its partial derivatives.
4. Continuity. Study continuity of following functions as a function of $\alpha>0$.
(a)

$$
f(x, y)=\left\{\begin{array}{lr}
\frac{x^{2 \alpha}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq 0 \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(b)

$$
f(x, y)=\left\{\begin{array}{lr}
\frac{x y}{\left(x^{2}+y^{2}\right)^{\alpha}}, & \text { if }(x, y) \neq 0 \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

5. Partial derivatives.

(a) Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{a}, \mathbf{b} \neq \mathbf{0}$. Show that the function $f(\mathbf{x})=\langle\mathbf{a}, \mathbf{x}\rangle \cdot\langle\mathbf{b}, \mathbf{x}\rangle$ is partially differentiable for all $\mathbf{x} \in \mathbb{R}^{n}$ and give its gradient.
(b) For $A \in M_{n, n}(\mathbb{R})$, let $b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the bilinear form given by $b(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, A \mathbf{y}\rangle$. Show that b is partially differentiable for all $\binom{\mathbf{x}}{\mathbf{y}} \in \mathbb{R}^{2 n}$ and give its gradient.
(c) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{x})=$ $\sum_{k=1}^{n} g\left(x_{k}\right)$, where x_{k} denotes the $\mathrm{k}^{t h}$ component of the vector $\mathbf{x}, x_{k}=\left\langle\mathbf{e}_{k}, \mathbf{x}\right\rangle$, is a partially differentiable function for all $\mathbf{x} \in \mathbb{R}^{n}$. Give its gradient.
(d) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable for all $t \in \mathbb{R}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ partially differentiable for all $\mathbf{x} \in \mathbb{R}^{n}$. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{x})=g(h(\mathbf{x}))$ is a partially differentiable function for all $\mathbf{x} \in \mathbb{R}^{n}$. Give its gradient.
6. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that f is differentiable at $(0,0)$ but is not of class C^{1} at this point.
7. For $x \in \mathbb{R}$ and $t>0$ we consider the function $f(x, t)$ defined by

$$
f(x, t)=\frac{1}{\sqrt{4 \pi t}} \exp \left(-\frac{x^{2}}{4 t}\right)
$$

(a) Show that f verifies the heat equation, i.e.

$$
\frac{\partial f}{\partial t}(x, t)-\frac{\partial^{2} f}{\partial x^{2}}(x, t)=0
$$

(b) Calculate

$$
\int_{\mathbb{R}} f(x, t) d x
$$

(c) Let $g(x, y, t)$ given by $g(x, y, t)=f(x, t) f(y, t)$. Calculate

$$
\frac{\partial g}{\partial t}(x, y, t)-\frac{\partial^{2} g}{\partial x^{2}}(x, y, t)-\frac{\partial^{2} g}{\partial y^{2}}(x, y, t)
$$

Remark: $\frac{\partial^{2}}{\partial x^{2}}=D_{x x}$ etc.
8. True of False.
(a) A continuous function is partially differentiable.
(b) If all the directional derivatives of f exist, then all the partial derivatives also exist.
(c) If all the partial derivatives of f exist, then all the directional derivative also exit.True \square
(d) If all the partial derivatives of f exist, then f is continuous.\square False

