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ÉC O L E  P O L Y T E C H N I Q U E
FÉ DÉR A L E  D E  L A U S A N N E

Solutions to Exercise Session, March 7, 2016

1. Two Formulas.

(a) Let f ,g : R −→ Rn be two functions of class C1. Show that

d

d t
〈f(t),g(t)〉 = 〈f ′(t),g(t)〉+ 〈f(t),g′(t)〉.

Solution. By the definition of the scalar product and the properties of the derivative
(linearity and the product rule), we get

d

d t
〈f(t),g(t)〉 =

d

d t

n∑
k=1

fk(t)gk(t)

=

n∑
k=1

f ′k(t)gk(t) + fk(t)g′k(t)

= 〈f ′(t),g(t)〉+ 〈f(t),g′(t)〉.

(b) Let a = (a1, a2, a3),b = (b1, b2, b3) ∈ R3. The cross product a×b of a and b is defined
by

a× b =

( a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

)
.

Calculate
〈a× b,a〉, 〈a× b,b〉 and 〈a× b,a× b〉.

Let f ,g : R −→ R3 be two functions of class C1. Show that

d

d t

(
f(t)× g(t)

)
= f ′(t)× g(t) + f(t)× g′(t).

Solutions.
〈a× b,a〉 = 0, 〈a× b,b〉 = 0

and
〈a× b,a× b〉 = 〈a,a〉〈b,b〉 − 〈a,b〉2.

Let f = (f1, f2, f3) and g = (g1, g2, g3). We only write the computation for the first
component:(

d

dt
f(t)× g(t)

)
1

=
d

dt
(f2(t)g3(t)− f3(t)g2(t)) =

= f ′2(t)g′3(t) + f2(t)g′3(t)− f ′3(t)g′2(t)− f3(t)g′2(t) = (f ′(t)× g(t) + f(t)× g′(t))1 .

2. parameterization of a circle. Consider the unit circle in the 2D plane:

x2 + y2 = 1. (1)
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(a) Find a trigonometric parameterization θ → (x(θ), y(θ)) of the unit circle.

(b) Rational Parameterization. Consider the line that meets the circle at the point
(−1, 0) and another point (x, y) that has the slope t. Find the parameterization of the
circle t → (x(t), y(t)). What is the computational difference between this parameteri-
zation and the one in (a)?

t
x

y

(�1, 0)

(x, y)

Solution.

(a) The trigonometric parameterization is given by (cos(θ), sin(θ)) where θ ∈ [0, 2π].

(b) the line passes through the point (−1, 0) that has the slope t. The equation of the line
then can be written as y = tx + t. We find the coordinates of the points that the line
and circle meet by solving the following system of equations{

x2 + y2 = 1

y = tx+ t

By substituting y into the first equation we get

(1 + t2)x2 + 2t2x+ t2 − 1 = 0 =⇒ (x+ 1)((1 + t2)x+ t2 − 1) = 0

So for t ∈ [−π/2, π/2]

x(t) =
1− t2
1 + t2

, y(t) =
2t

1 + t2

The benefit of this parameterization is that for any rational number t we receive a
rational number for x and y so there is no need for approximating irrational values
when dealing with sin and cos.

3. Helix. Consider the curve

r(t) =

 a cos(t)

a sin(t)

bt


for a, b > 0.

(a) Draw the curve for t ∈ [0, 2π]. Use a commercial software if you can e.g. MATLAB,
Mathematica or etc.

(b) Find the curvature κ for the helix.

(c) What is the largest value κ can have for a given value b.
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(a)

732 Chapter 13: Vector-Valued Functions and Motion in Space

y

o

Therefore, the radius of curvature is 1/K == 1/2. At the origin we have t == 0 and T == i,
so N == j. Thus the center of the circle is (0, 1/2). The equation of the osculating circle is
therefore

(x - O? + &-tY= (tY"
You can see from Figure 13.21 that the osculating circle is a better approximation to the
parabola at the origin than is the tangent line approximation y == o. •

FIGURE 13.21 The osculating circle for
the parabola y = x 2 at the origin
(Example 4).

Curvature and Normal Vectors for Space Curves
If a smooth curve in space is specified by the position vector ret) as a function of some
parameter t, and if s is the arc length parameter of the curve, then the unit tangent vector
T is dr/ ds == v/ Iv I. The curvature in space is then defined to be

(3)

just as for plane curves. The vector dT/ ds is orthogonal to T, and we define the principal
unit normal to be

1 dT dT/dt
N = KdS = IdT/dtl" (4)

Then using Equation (3),

SoLution We calculate T from the velocity vector v:

a,b 0,

Find the curvature for the helix (Figure 13.22)

v == -(a sin t)i + (a cos t)j + bk
Ivl == Va 2 sin2 t + a2 cos2 t + b2 == Va 2 + b2

T == _IvI = yI 1 [-(a sin t)i + (a cos t)j + bk]"
v a2 + b2

r(t) == (a cos t)i + (a sin t)j + btk,

EXAMPLE 5

y

x

FIGURE 13.22 The helix

r(t) = (a cos t)i + (a sin t)j + btk,
drawn with a and b positive and t 0
(Example 5).

1 IdTIK==F1dt

= V 1 IV 1 [-(a cos t)i - (a sin t)j] I
a2 + b2 a2 + b2

== 2 a 21-(cost)i-(sint)jl
a + b

_ a Y( )2 (. )2 _ a- 2 2 cos t + SIn t - 2 2 .
a +b a +b

From this equation, we see that increasing b for a fixed a decreases the curvature. De-
creasing a for a fixed b eventually decreases the curvature as well.

Ifb == 0, the helix reduces to a circle ofradius a and its curvature reduces to 1/a, as it
should. If a == 0, the helix becomes the z-axis, and its curvature reduces to 0, again as it
should. •

(d) What is the length of the curve for t ∈ [0, 2π].

Solution.

(b) The curvature κ of r(t) is given by,

κ(t) =
||r′(t)× r′′(t)||
||r′(t)||3 .

and we have

r′(t) =

−a sin(t)
a cos(t)

b

 , r′′(t) =

−a cos(t)
−a sin(t)

0

 .

Thus

r′(t)× r′′(t) =

 ab sin(t)
−ab cos(t)

a2


and

‖r′ × r′′‖ =
√
a2b2 + a4, ‖r′‖ =

√
a2 + b2

Hence
κ =

a

a2 + b2

(c) We set the derivative with respect to a to be zero

κ′(a) =
−a2 + b2

(a2 + b2)2
= 0 =⇒ a = b.

It is easy to check that for a = b, κ attains its maximum.

(d) The formula for the length of a curve is given by

L =

∫ b

a

|r′(t)| dt

So

L =

∫ 2π

0

√
a2 sin2(t) + a2 cos2(t) + b2 dt

=

∫ 2π

0

√
a2 + b2 dt

= 2π
√
a2 + b2
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4. Free movement. Let r : R→ R3 be a curve of class C2 such that r̈(t) = 0. For m > 0, we
introduce the momentum p(t) = mṙ(t) and the angular momentum L(t) = r(t)× p(t).

(a) Show that L(t) is constant.

(b) Show that the energy E(t) :=
〈p(t),p(t)〉

2m
is constant.

Solutions. L(t) is of class C1 and, by exercise 3, L̇(t) = mṙ(t)× ṙ(t) +mr(t)× r̈(t) = 0.
By the mean value theorem (see Analyse 1) each component of L(t) is constant so L(t) is
constant. The energy is of class C1. It is constant since ṗ(t) = mr̈(t) = 0 and, by exercise
3,

Ė(t) =
〈ṗ(t),p(t)〉

2m
+
〈p(t), ṗ(t)〉

2m
= 0,

and we conclude again with the mean value theorem.

Solution - b. Alternately we can apply the mean value theorem to solve for r(t). The
equation ṗ(t) = mr̈(t) = 0 implies that p(t) is constant, ie p(t) = p0 = mv0 for a p0 ∈ R3.

It follows that ṙ− ˙(v0t) = 0 and so r(t) = v0t+ r0 for a r0 ∈ R3. By a direct calculation, it
follows that

L(t) = mr0 × v0, E(t) :=
〈p0,p0〉

2m
=
m〈v0,v0〉

2
.

5. Harmonic oscillator in three dimensions. Let r : R → R3 be a curve of class C2 such
that r̈(t) = −ω2r(t), ω > 0. For m > 0, we introduce the momentum p(t) = mṙ(t) and the
angular momentum L(t) = r(t)× p(t).

(a) Show that L(t) is constant.

(b) Show that the energy E(t) :=
〈p(t),p(t)〉

2m
+
mω2〈r(t), r(t)〉

2
is constant.

Solutions. Using the equation r̈(t) we find as above

L̇(t) = mṙ(t)× ṙ(t) +mr(t)× r̈(t) = 0 +mr(t)× (−ω2r(t)) = 0

and we conclude by the mean value theorem (see exercise above). Similarly, the energy is of
class C1, and using the equation for r̈(t) and the properties of the scalar product (symmetry,
linearity in each component) we get

Ė(t) =
〈ṗ(t),p(t)〉

2m
+
〈p(t), ṗ(t)〉

2m
+
mω2〈ṙ(t), r(t)〉

2
+
mω2〈r(t), ṙ(t)〉

2

= m〈r̈(t), ṙ(t)〉+mω2〈r(t), ṙ(t)〉
= m〈r̈(t) + ω2r(t), ṙ(t)〉
= m〈0, ṙ(t)〉 = 0.

Remark. Usually, we don’t know which quantities are constant (we say ”conserved”). To
find them, we multiply the equation by some appropriate functions. For example, if we take
the cross product of the equation r̈(t) = −ω2r(t) with r(t), we find

r̈(t)× r(t) = −ω2r(t)× r(t) = 0

which brings us to L̇(t) = 0. If we take the scalar product of r̈(t) = −ω2r(t) with ṙ(t), we
find

〈r̈(t), ṙ(t)〉 = −〈ω2r(t), ṙ(t)〉
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which is equivalent to
d

d t
〈ṙ(t), ṙ(t)〉 = −ω2 d

d t
〈r(t)r(t)〉

hence the conservation of the energy.

6. Find the derivative of,
f(t) = 〈u(t),v(t)〉.

When u(t) and v(t) are given as,

u(t) =

 1
−3t2

4t3

 , v(t) =

 t
cos t
sin t

 .

(a) f ′(t) = 1− 6t cos t+ 15t2 sin t+ 4t3 cos t

(b) f ′(t) = 6t cos t+ 15t2 sin t+ 4t3 cos t

(c) f ′(t) = 3t cos t+ 7t2 sin t+ 4t3 cos t

(d) f ′(t) = 1− 3t cos t+ 11t2 sin t+ 4t3 cos t

Solutions. (a) is correct.

The product rule for derivatives of dot products says that,

f ′(t) = 〈u(t),v′(t)〉+ 〈u′(t),v(t)〉

Now for the given u(t) and v(t),

u′(t) =

 0
−6t
12t2

 , v′(t) =

 1
− sin t
cos t


Thus,

f ′(t) = (1 + 3t2 sin t+ 4t3 cos t) + (−6t cos t+ 12t2 sin t)

And so,
f ′(t) = 1− 6t cos t+ 15t2 sin t+ 4t3 cos t.

7. Which of the following integrals gives the length of the curve,

c(t) =

(
2t2

t

)
, 0 ≤ t ≤ 4.

(a) I =
∫ 4

0

√
16t2 + 1 dt

(b) I = 2
∫ 4

0

∣∣16t2 + 1
∣∣ dt

(c) I =
∫ 2

0

√
16t2 + 1 dt

(d) I = 2
∫ 2

0

∣∣16t2 + 1
∣∣ dt
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Solutions. (a) is correct.

The arc length for the curve c(t), a ≤ t ≤ b, is given by the integral expression,

I =

∫ b

a

||c′(t)|| dt.

For the given c(t) we have,

c(t) =

(
4t
1

)
Consequently, the curve has

arc length =

∫ 4

0

√
16t2 + 1 dt.

8. Find the unit tangent vector T(t) to the graph of the vector function

r(t) =

3 sin t
4t

3 cos t

 .

(a) T(t) =

 3
5 cos t

4
5

3
5 sin t


(b) T(t) =

3 sin t
4t

3 cos t


(c) T(t) =

3 sin t
−4

3 cos t


(d) T(t) =

 3
5 cos t

4
5

− 3
5 sin t


Solutions. (d) is correct.

The unit tangent vector T(t) to r(t) is given by

T(t) =
r′(t)

|r′(t)| .

For the given r(t) we have,

r′(t) =

 3 cos t
4

−3 sin t


while,

|r′(t)| =
√

32(cos2 t+ sin2 t) + (4)2 = 5.

Consequently,

T(t) =

 3
5 cos t

4
5

− 3
5 sin t
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9. Determine the curvature, κ, of the curve

r(t) =

t20
4t


(a) κ(t) = 8t

4t2+16

(b) κ(t) = 8
(4t2+16)1/2

(c) κ(t) = 8t
(4t2+16)3/2

(d) κ(t) = 8
(4t2+16)3/2

Solutions. (d) is correct

The curvature κ of r(t) is given by,

κ(t) =
||r′(t)× r′′(t)||
||r′(t)||3 .

So for the given r(t) we have,

r′(t) =

2t
0
4

 , r′′(t) =

2
0
0

 .

Thus

r′(t)× r′′(t) =

0
8
0


and

||r′(t)× r′′(t)|| =
√

82 = 8, ||r′(t)|| = (4t2 + 16)1/2.

Hence,

κ(t) =
8

(4t2 + 16)3/2
.
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