Solutions to Exercise Session, March 7, 2016

1. Two Formulas.

(a) Let $\mathbf{f}, \mathbf{g}: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ be two functions of class C^{1}. Show that

$$
\frac{d}{d t}\langle\mathbf{f}(t), \mathbf{g}(t)\rangle=\left\langle\mathbf{f}^{\prime}(t), \mathbf{g}(t)\right\rangle+\left\langle\mathbf{f}(t), \mathbf{g}^{\prime}(t)\right\rangle
$$

Solution. By the definition of the scalar product and the properties of the derivative (linearity and the product rule), we get

$$
\begin{aligned}
\frac{d}{d t}\langle\mathbf{f}(t), \mathbf{g}(t)\rangle & =\frac{d}{d t} \sum_{k=1}^{n} f_{k}(t) g_{k}(t) \\
& =\sum_{k=1}^{n} f_{k}^{\prime}(t) g_{k}(t)+f_{k}(t) g_{k}^{\prime}(t) \\
& =\left\langle\mathbf{f}^{\prime}(t), \mathbf{g}(t)\right\rangle+\left\langle\mathbf{f}(t), \mathbf{g}^{\prime}(t)\right\rangle .
\end{aligned}
$$

(b) Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right), \mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$. The cross product $\mathbf{a} \times \mathbf{b}$ of \mathbf{a} and \mathbf{b} is defined by

$$
\mathbf{a} \times \mathbf{b}=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right) .
$$

Calculate

$$
\langle\mathbf{a} \times \mathbf{b}, \mathbf{a}\rangle,\langle\mathbf{a} \times \mathbf{b}, \mathbf{b}\rangle \text { and }\langle\mathbf{a} \times \mathbf{b}, \mathbf{a} \times \mathbf{b}\rangle .
$$

Let $\mathbf{f}, \mathbf{g}: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ be two functions of class C^{1}. Show that

$$
\frac{d}{d t}(\mathbf{f}(t) \times \mathbf{g}(t))=\mathbf{f}^{\prime}(t) \times \mathbf{g}(t)+\mathbf{f}(t) \times \mathbf{g}^{\prime}(t)
$$

Solutions

$$
\langle\mathbf{a} \times \mathbf{b}, \mathbf{a}\rangle=0, \quad\langle\mathbf{a} \times \mathbf{b}, \mathbf{b}\rangle=0
$$

and

$$
\langle\mathbf{a} \times \mathbf{b}, \mathbf{a} \times \mathbf{b}\rangle=\langle\mathbf{a}, \mathbf{a}\rangle\langle\mathbf{b}, \mathbf{b}\rangle-\langle\mathbf{a}, \mathbf{b}\rangle^{2} .
$$

Let $\mathbf{f}=\left(f_{1}, f_{2}, f_{3}\right)$ and $\mathbf{g}=\left(g_{1}, g_{2}, g_{3}\right)$. We only write the computation for the first component:

$$
\begin{aligned}
& \left(\frac{d}{d t} \mathbf{f}(t) \times \mathbf{g}(t)\right)_{1}=\frac{d}{d t}\left(f_{2}(t) g_{3}(t)-f_{3}(t) g_{2}(t)\right)= \\
& =f_{2}^{\prime}(t) g_{3}^{\prime}(t)+f_{2}(t) g_{3}^{\prime}(t)-f_{3}^{\prime}(t) g_{2}^{\prime}(t)-f_{3}(t) g_{2}^{\prime}(t)=\left(\mathbf{f}^{\prime}(t) \times \mathbf{g}(t)+\mathbf{f}(t) \times \mathbf{g}^{\prime}(t)\right)_{1} .
\end{aligned}
$$

2. parameterization of a circle. Consider the unit circle in the 2D plane:

$$
\begin{equation*}
x^{2}+y^{2}=1 \tag{1}
\end{equation*}
$$

(a) Find a trigonometric parameterization $\theta \rightarrow(x(\theta), y(\theta))$ of the unit circle.
(b) Rational Parameterization. Consider the line that meets the circle at the point $(-1,0)$ and another point (x, y) that has the slope t. Find the parameterization of the circle $t \rightarrow(x(t), y(t))$. What is the computational difference between this parameterization and the one in (a)?

Solution.

(a) The trigonometric parameterization is given by $(\cos (\theta), \sin (\theta))$ where $\theta \in[0,2 \pi]$.
(b) the line passes through the point $(-1,0)$ that has the slope t. The equation of the line then can be written as $y=t x+t$. We find the coordinates of the points that the line and circle meet by solving the following system of equations

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=1 \\
y=t x+t
\end{array}\right.
$$

By substituting y into the first equation we get

$$
\left(1+t^{2}\right) x^{2}+2 t^{2} x+t^{2}-1=0 \quad \Longrightarrow \quad(x+1)\left(\left(1+t^{2}\right) x+t^{2}-1\right)=0
$$

So for $t \in[-\pi / 2, \pi / 2]$

$$
x(t)=\frac{1-t^{2}}{1+t^{2}}, \quad y(t)=\frac{2 t}{1+t^{2}}
$$

The benefit of this parameterization is that for any rational number t we receive a rational number for x and y so there is no need for approximating irrational values when dealing with sin and cos.
3. Helix. Consider the curve

$$
\mathbf{r}(t)=\left(\begin{array}{l}
a \cos (t) \\
a \sin (t) \\
b t
\end{array}\right)
$$

for $a, b>0$.
(a) Draw the curve for $t \in[0,2 \pi]$. Use a commercial software if you can e.g. MATLAB, Mathematica or etc.
(b) Find the curvature κ for the helix.
(c) What is the largest value κ can have for a given value b.
(d) What is the length of the curve for $t \in[0,2 \pi]$.

Solution.

(b) The curvature κ of $\mathbf{r}(t)$ is given by,

$$
\kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

and we have

$$
\mathbf{r}^{\prime}(t)=\left(\begin{array}{c}
-a \sin (t) \\
a \cos (t) \\
b
\end{array}\right), \quad \mathbf{r}^{\prime \prime}(t)=\left(\begin{array}{c}
-a \cos (t) \\
-a \sin (t) \\
0
\end{array}\right)
$$

Thus

$$
\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left(\begin{array}{c}
a b \sin (t) \\
-a b \cos (t) \\
a^{2}
\end{array}\right)
$$

and

$$
\left\|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right\|=\sqrt{a^{2} b^{2}+a^{4}}, \quad\left\|\mathbf{r}^{\prime}\right\|=\sqrt{a^{2}+b^{2}}
$$

Hence

$$
\kappa=\frac{a}{a^{2}+b^{2}}
$$

(c) We set the derivative with respect to a to be zero

$$
\kappa^{\prime}(a)=\frac{-a^{2}+b^{2}}{\left(a^{2}+b^{2}\right)^{2}}=0 \Longrightarrow a=b
$$

It is easy to check that for $a=b, \kappa$ attains its maximum.
(d) The formula for the length of a curve is given by

$$
L=\int_{a}^{b}\left|r^{\prime}(t)\right| d t
$$

So

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2}(t)+a^{2} \cos ^{2}(t)+b^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{a^{2}+b^{2}} d t \\
& =2 \pi \sqrt{a^{2}+b^{2}}
\end{aligned}
$$

4. Free movement. Let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a curve of class C^{2} such that $\ddot{\mathbf{r}}(t)=\mathbf{0}$. For $m>0$, we introduce the momentum $\mathbf{p}(t)=m \dot{\mathbf{r}}(t)$ and the angular momentum $\mathbf{L}(t)=\mathbf{r}(t) \times \mathbf{p}(t)$.
(a) Show that $\mathbf{L}(t)$ is constant.
(b) Show that the energy $E(t):=\frac{\langle\mathbf{p}(t), \mathbf{p}(t)\rangle}{2 m}$ is constant.

Solutions. $\quad \mathbf{L}(t)$ is of class C^{1} and, by exercise $3, \dot{\mathbf{L}}(t)=m \dot{\mathbf{r}}(t) \times \dot{\mathbf{r}}(t)+m \mathbf{r}(t) \times \ddot{\mathbf{r}}(t)=\mathbf{0}$. By the mean value theorem (see Analyse 1) each component of $\mathbf{L}(t)$ is constant so $\mathbf{L}(t)$ is constant. The energy is of class C^{1}. It is constant since $\dot{\mathbf{p}}(t)=m \ddot{\mathbf{r}}(t)=\mathbf{0}$ and, by exercise 3 ,

$$
\dot{E}(t)=\frac{\langle\dot{\mathbf{p}}(t), \mathbf{p}(t)\rangle}{2 m}+\frac{\langle\mathbf{p}(t), \dot{\mathbf{p}}(t)\rangle}{2 m}=0
$$

and we conclude again with the mean value theorem.

Solution - b. Alternately we can apply the mean value theorem to solve for $\mathbf{r}(t)$. The equation $\dot{\mathbf{p}}(t)=m \ddot{\mathbf{r}}(t)=\mathbf{0}$ implies that $\mathbf{p}(t)$ is constant, ie $\mathbf{p}(t)=\mathbf{p}_{0}=m \mathbf{v}_{0}$ for a $\mathbf{p}_{0} \in \mathbb{R}^{3}$. It follows that $\dot{\mathbf{r}}-\left(\mathbf{v}_{0} t\right)=\mathbf{0}$ and so $\mathbf{r}(t)=\mathbf{v}_{0} t+\mathbf{r}_{0}$ for a $\mathbf{r}_{0} \in \mathbb{R}^{3}$. By a direct calculation, it follows that

$$
\mathbf{L}(t)=m \mathbf{r}_{0} \times \mathbf{v}_{0}, \quad E(t):=\frac{\left\langle\mathbf{p}_{0}, \mathbf{p}_{0}\right\rangle}{2 m}=\frac{m\left\langle\mathbf{v}_{0}, \mathbf{v}_{0}\right\rangle}{2}
$$

5. Harmonic oscillator in three dimensions. Let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a curve of class C^{2} such that $\ddot{\mathbf{r}}(t)=-\omega^{2} \mathbf{r}(t), \omega>0$. For $m>0$, we introduce the momentum $\mathbf{p}(t)=m \dot{\mathbf{r}}(t)$ and the angular momentum $\mathbf{L}(t)=\mathbf{r}(t) \times \mathbf{p}(t)$.
(a) Show that $\mathbf{L}(t)$ is constant.
(b) Show that the energy $E(t):=\frac{\langle\mathbf{p}(t), \mathbf{p}(t)\rangle}{2 m}+\frac{m \omega^{2}\langle\mathbf{r}(t), \mathbf{r}(t)\rangle}{2}$ is constant.

Solutions. Using the equation $\ddot{\mathbf{r}}(t)$ we find as above

$$
\dot{\mathbf{L}}(t)=m \dot{\mathbf{r}}(t) \times \dot{\mathbf{r}}(t)+m \mathbf{r}(t) \times \ddot{\mathbf{r}}(t)=\mathbf{0}+m \mathbf{r}(t) \times\left(-\omega^{2} \mathbf{r}(t)\right)=\mathbf{0}
$$

and we conclude by the mean value theorem (see exercise above). Similarly, the energy is of class C^{1}, and using the equation for $\ddot{\mathbf{r}}(t)$ and the properties of the scalar product (symmetry, linearity in each component) we get

$$
\begin{aligned}
\dot{E}(t) & =\frac{\langle\dot{\mathbf{p}}(t), \mathbf{p}(t)\rangle}{2 m}+\frac{\langle\mathbf{p}(t), \dot{\mathbf{p}}(t)\rangle}{2 m}+\frac{m \omega^{2}\langle\dot{\mathbf{r}}(t), \mathbf{r}(t)\rangle}{2}+\frac{m \omega^{2}\langle\mathbf{r}(t), \dot{\mathbf{r}}(t)\rangle}{2} \\
& =m\langle\dot{\mathbf{r}}(t), \dot{\mathbf{r}}(t)\rangle+m \omega^{2}\langle\mathbf{r}(t), \dot{\mathbf{r}}(t)\rangle \\
& =m\left\langle\dot{\mathbf{r}}(t)+\omega^{2} \mathbf{r}(t), \dot{\mathbf{r}}(t)\right\rangle \\
& =m\langle\mathbf{0}, \dot{\mathbf{r}}(t)\rangle=0 .
\end{aligned}
$$

Remark. Usually, we don't know which quantities are constant (we say "conserved"). To find them, we multiply the equation by some appropriate functions. For example, if we take the cross product of the equation $\ddot{\mathbf{r}}(t)=-\omega^{2} \mathbf{r}(t)$ with $\mathbf{r}(t)$, we find

$$
\ddot{\mathbf{r}}(t) \times \mathbf{r}(t)=-\omega^{2} \mathbf{r}(t) \times \mathbf{r}(t)=\mathbf{0}
$$

which brings us to $\dot{\mathbf{L}}(t)=\mathbf{0}$. If we take the scalar product of $\ddot{\mathbf{r}}(t)=-\omega^{2} \mathbf{r}(t)$ with $\dot{\mathbf{r}}(t)$, we find

$$
\langle\ddot{\mathbf{r}}(t), \dot{\mathbf{r}}(t)\rangle=-\left\langle\omega^{2} \mathbf{r}(t), \dot{\mathbf{r}}(t)\right\rangle
$$

which is equivalent to

$$
\frac{d}{d t}\langle\dot{\mathbf{r}}(t), \dot{\mathbf{r}}(t)\rangle=-\omega^{2} \frac{d}{d t}\langle\mathbf{r}(t) \mathbf{r}(t)\rangle
$$

hence the conservation of the energy.
6. Find the derivative of,

$$
f(t)=\langle\mathbf{u}(t), \mathbf{v}(t)\rangle
$$

When $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are given as,

$$
\mathbf{u}(t)=\left(\begin{array}{c}
1 \\
-3 t^{2} \\
4 t^{3}
\end{array}\right), \quad \mathbf{v}(t)=\left(\begin{array}{c}
t \\
\cos t \\
\sin t
\end{array}\right) .
$$

(a) $f^{\prime}(t)=1-6 t \cos t+15 t^{2} \sin t+4 t^{3} \cos t$
(b) $f^{\prime}(t)=6 t \cos t+15 t^{2} \sin t+4 t^{3} \cos t$
(c) $f^{\prime}(t)=3 t \cos t+7 t^{2} \sin t+4 t^{3} \cos t$
(d) $f^{\prime}(t)=1-3 t \cos t+11 t^{2} \sin t+4 t^{3} \cos t$

Solutions. (a) is correct.
The product rule for derivatives of dot products says that,

$$
f^{\prime}(t)=\left\langle\mathbf{u}(t), \mathbf{v}^{\prime}(t)\right\rangle+\left\langle\mathbf{u}^{\prime}(t), \mathbf{v}(t)\right\rangle
$$

Now for the given $\mathbf{u}(t)$ and $\mathbf{v}(t)$,

$$
\mathbf{u}^{\prime}(t)=\left(\begin{array}{c}
0 \\
-6 t \\
12 t^{2}
\end{array}\right), \quad \mathbf{v}^{\prime}(t)=\left(\begin{array}{c}
1 \\
-\sin t \\
\cos t
\end{array}\right)
$$

Thus,

$$
f^{\prime}(t)=\left(1+3 t^{2} \sin t+4 t^{3} \cos t\right)+\left(-6 t \cos t+12 t^{2} \sin t\right)
$$

And so,

$$
f^{\prime}(t)=1-6 t \cos t+15 t^{2} \sin t+4 t^{3} \cos t
$$

7. Which of the following integrals gives the length of the curve,

$$
\mathbf{c}(t)=\binom{2 t^{2}}{t}, \quad 0 \leq t \leq 4
$$

(a) $I=\int_{0}^{4} \sqrt{16 t^{2}+1} d t$
(b) $I=2 \int_{0}^{4}\left|16 t^{2}+1\right| d t$
(c) $I=\int_{0}^{2} \sqrt{16 t^{2}+1} d t$
(d) $I=2 \int_{0}^{2}\left|16 t^{2}+1\right| d t$

Solutions. (a) is correct.
The arc length for the curve $\mathbf{c}(t), a \leq t \leq b$, is given by the integral expression,

$$
I=\int_{a}^{b}\left\|\mathbf{c}^{\prime}(t)\right\| d t
$$

For the given $\mathbf{c}(t)$ we have,

$$
\mathbf{c}(t)=\binom{4 t}{1}
$$

Consequently, the curve has

$$
\text { arc length }=\int_{0}^{4} \sqrt{16 t^{2}+1} d t
$$

8. Find the unit tangent vector $\mathbf{T}(t)$ to the graph of the vector function

$$
\mathbf{r}(t)=\left(\begin{array}{c}
3 \sin t \\
4 t \\
3 \cos t
\end{array}\right)
$$

(a) $\mathbf{T}(t)=\left(\begin{array}{c}\frac{3}{5} \cos t \\ \frac{4}{5} \\ \frac{3}{5} \sin t\end{array}\right)$
(b) $\mathbf{T}(t)=\left(\begin{array}{c}3 \sin t \\ 4 t \\ 3 \cos t\end{array}\right)$
(c) $\mathbf{T}(t)=\left(\begin{array}{c}3 \sin t \\ -4 \\ 3 \cos t\end{array}\right)$
(d) $\mathbf{T}(t)=\left(\begin{array}{c}\frac{3}{5} \cos t \\ \frac{4}{5} \\ -\frac{3}{5} \sin t\end{array}\right)$

Solutions. (d) is correct.
The unit tangent vector $\mathbf{T}(t)$ to $\mathbf{r}(t)$ is given by

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

For the given $\mathbf{r}(t)$ we have,

$$
\mathbf{r}^{\prime}(t)=\left(\begin{array}{c}
3 \cos t \\
4 \\
-3 \sin t
\end{array}\right)
$$

while,

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{3^{2}\left(\cos ^{2} t+\sin ^{2} t\right)+(4)^{2}}=5
$$

Consequently,

$$
\mathbf{T}(t)=\left(\begin{array}{c}
\frac{3}{5} \cos t \\
\frac{4}{5} \\
-\frac{3}{5} \sin t
\end{array}\right)
$$

9. Determine the curvature, κ, of the curve

$$
\mathbf{r}(t)=\left(\begin{array}{c}
t^{2} \\
0 \\
4 t
\end{array}\right)
$$

(a) $\kappa(t)=\frac{8 t}{4 t^{2}+16}$
(b) $\kappa(t)=\frac{8}{\left(4 t^{2}+16\right)^{1 / 2}}$
(c) $\kappa(t)=\frac{8 t}{\left(4 t^{2}+16\right)^{3 / 2}}$
(d) $\kappa(t)=\frac{8}{\left(4 t^{2}+16\right)^{3 / 2}}$

Solutions. (d) is correct
The curvature κ of $\mathbf{r}(t)$ is given by,

$$
\kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

So for the given $\mathbf{r}(t)$ we have,

$$
\mathbf{r}^{\prime}(t)=\left(\begin{array}{c}
2 t \\
0 \\
4
\end{array}\right), \quad \mathbf{r}^{\prime \prime}(t)=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)
$$

Thus

$$
\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left(\begin{array}{l}
0 \\
8 \\
0
\end{array}\right)
$$

and

$$
\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|=\sqrt{8^{2}}=8, \quad\left\|\mathbf{r}^{\prime}(t)\right\|=\left(4 t^{2}+16\right)^{1 / 2}
$$

Hence,

$$
\kappa(t)=\frac{8}{\left(4 t^{2}+16\right)^{3 / 2}}
$$

