Exercise Session, March 7, 2016

1. Two Formulas.

(a) Let $\mathbf{f}, \mathbf{g}: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ be two functions of class C^{1}. Show that

$$
\frac{d}{d t}\langle\mathbf{f}(t), \mathbf{g}(t)\rangle=\left\langle\mathbf{f}^{\prime}(t), \mathbf{g}(t)\right\rangle+\left\langle\mathbf{f}(t), \mathbf{g}^{\prime}(t)\right\rangle
$$

(b) Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right), \mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$. The cross product $\mathbf{a} \times \mathbf{b}$ of \mathbf{a} and \mathbf{b} is defined by

$$
\mathbf{a} \times \mathbf{b}=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right) .
$$

Calculate

$$
\langle\mathbf{a} \times \mathbf{b}, \mathbf{a}\rangle,\langle\mathbf{a} \times \mathbf{b}, \mathbf{b}\rangle \text { and }\langle\mathbf{a} \times \mathbf{b}, \mathbf{a} \times \mathbf{b}\rangle .
$$

Let $\mathbf{f}, \mathbf{g}: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ be two functions of class C^{1}. Show that

$$
\frac{d}{d t}(\mathbf{f}(t) \times \mathbf{g}(t))=\mathbf{f}^{\prime}(t) \times \mathbf{g}(t)+\mathbf{f}(t) \times \mathbf{g}^{\prime}(t)
$$

2. parameterization of a circle. Consider the unit circle in the 2D plane:

$$
\begin{equation*}
x^{2}+y^{2}=1 \text {. } \tag{1}
\end{equation*}
$$

(a) Find a trigonometric parameterization $\theta \rightarrow(x(\theta), y(\theta))$ of the unit circle.
(b) Rational Parameterization. Consider the line that meets the circle at the point $(-1,0)$ and another point (x, y) that has the slope t. Find the parameterization of the circle $t \rightarrow(x(t), y(t))$. What is the computational difference between this parameterization and the one in (a)?

3. Harmonic oscillator in three dimensions. Let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a curve of class C^{2} such that $\ddot{\mathbf{r}}(t)=-\omega^{2} \mathbf{r}(t), \omega>0$. For $m>0$, we introduce the momentum $\mathbf{p}(t)=m \dot{\mathbf{r}}(t)$ and the angular momentum $\mathbf{L}(t)=\mathbf{r}(t) \times \mathbf{p}(t)$.
(a) Show that $\mathbf{L}(t)$ is constant.
(b) Show that the energy $E(t):=\frac{\langle\mathbf{p}(t), \mathbf{p}(t)\rangle}{2 m}+\frac{m \omega^{2}\langle\mathbf{r}(t), \mathbf{r}(t)\rangle}{2}$ is constant.
4. Find the derivative of,

$$
f(t)=\langle\mathbf{u}(t), \mathbf{v}(t)\rangle
$$

When $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are given as,

$$
\mathbf{u}(t)=\left(\begin{array}{c}
1 \\
-3 t^{2} \\
4 t^{3}
\end{array}\right), \quad \mathbf{v}(t)=\left(\begin{array}{c}
t \\
\cos t \\
\sin t
\end{array}\right) .
$$

(a) $f^{\prime}(t)=1-6 t \cos t+15 t^{2} \sin t+4 t^{3} \cos t$
(b) $f^{\prime}(t)=6 t \cos t+15 t^{2} \sin t+4 t^{3} \cos t$
(c) $f^{\prime}(t)=3 t \cos t+7 t^{2} \sin t+4 t^{3} \cos t$
(d) $f^{\prime}(t)=1-3 t \cos t+11 t^{2} \sin t+4 t^{3} \cos t$
5. Which of the following integrals gives the length of the curve,

$$
\mathbf{c}(t)=\binom{2 t^{2}}{t}, \quad 0 \leq t \leq 4
$$

(a) $I=\int_{0}^{4} \sqrt{16 t^{2}+1} d t$
(b) $I=2 \int_{0}^{4}\left|16 t^{2}+1\right| d t$
(c) $I=\int_{0}^{2} \sqrt{16 t^{2}+1} d t$
(d) $I=2 \int_{0}^{2}\left|16 t^{2}+1\right| d t$
6. Find the unit tangent vector $\mathbf{T}(t)$ to the graph of the vector function

$$
\mathbf{r}(t)=\left(\begin{array}{c}
3 \sin t \\
4 t \\
3 \cos t
\end{array}\right)
$$

(a) $\mathbf{T}(t)=\left(\begin{array}{c}\frac{3}{5} \cos t \\ \frac{4}{5} \\ \frac{3}{5} \sin t\end{array}\right)$
(b) $\mathbf{T}(t)=\left(\begin{array}{c}3 \sin t \\ 4 t \\ 3 \cos t\end{array}\right)$
(c) $\mathbf{T}(t)=\left(\begin{array}{c}3 \sin t \\ -4 \\ 3 \cos t\end{array}\right)$
(d) $\mathbf{T}(t)=\left(\begin{array}{c}\frac{3}{5} \cos t \\ \frac{4}{5} \\ -\frac{3}{5} \sin t\end{array}\right)$

