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ÉC O L E  P O L Y T E C H N I Q U E
FÉ DÉR A L E  D E  L A U S A N N E

Solutions to Session of February 29, 2016

1. A property of the Euclidean norm. By the properties of the scalar product, we get

||x± y||22 = 〈x± y,x± y〉
= 〈x,x〉+ 〈y,y〉 ± 〈x,y〉 ± 〈y,x〉
= ||x||22 + ||y||22 ± 〈x,y〉 ± 〈y,x〉

and hence
||x + y||22 + ||x− y||22 − 2||x||22 − 2||y||22 = 0

We also call this identity the parallelogram identity. Why?

2. Cauchy-Schwarz’s inequality in a Euclidean space. Let (E, 〈·, ·〉) be a Euclidean
space. Show that for all x,y ∈ E:∣∣〈x,y〉∣∣ ≤√〈x,x〉 ·√〈y,y〉.
Solution. For all x,y ∈ E and λ real:

0 ≤ 〈x− λy,x− λy〉 = 〈x,x〉 − 2λ〈x,y〉+ λ2〈y,y〉.

We minimize compared to λ: if y = 0 there is nothing to prove (the two members of Cauchy-
Schwarz’s inequality are equal to zero). If y 6= 0, then 〈y,y〉 > 0 by positivity of the scalar

product, and the minimum of this polynomial of degree 2 in λ is obtained in λ =
〈x,y〉
〈y,y〉

.

We get

0 ≤ 〈x,x〉 − 〈x,y〉
2

〈y,y〉
hence Cauchy-Schwarz’s inequality.

3. Hölder’s inequality and norms on Rn. For x ∈ Rn and p ≥ 1 let

||x||p =

( n∑
k=1

|xk|p
) 1

p

.

Moreover, let
||x||∞ = max

1≤k≤n
|xk|.

(a) Show Hölder’s inequality: for all x,y ∈ Rn and
1

p
+

1

p′
= 1 (with the convention that

if p = 1, then p′ =∞ and vice versa):∣∣〈x,y〉∣∣ ≤ ||x||p||y||p′ .
(Hint: use Young’s inequality: for p and p′ satisfying 1/p+ 1/p′ = 1

ab ≤ ap

p
+
bp
′

p′
, for all a, b ∈ R
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to show that for all t > 0: ∣∣〈x,y〉∣∣ ≤ tp||x||pp
p

+
t−p

′ ||y||p
′

p′

p′

and deduce Hölder’s inequality from it.)

Solution. Note first that we can assume x,y 6= 0 since otherwise the inequality is
trivial (the two members are equal to zero). By the triangular inequality for the absolute
value, we derive the basic inequality:∣∣〈x,y〉∣∣ =

∣∣∣∣ n∑
k=1

xkyk

∣∣∣∣ ≤ n∑
k=1

|xk| · |yk|.

Hölder’s inequality follows directly for p = 1:∣∣〈x,y〉∣∣ ≤ ||x||1||y||∞.
Let p > 1. By Young’s inequality, for all t > 0 and all k:

|xk| · |yk| = |txk| · |t−1yk| ≤
tp|xk|p

p
+
t−p

′ |yk|p
′

p′
,

1

p
+

1

p′
= 1

Hence, replacing the sums by the norms:

∣∣〈x,y〉∣∣ ≤ tp||x||pp
p

+
t−p

′ ||y||p
′

p′

p′
.

If we define

f(t) :=
tp||x||pp
p

+
t−p

′ ||y||p
′

p′

p′

then f :]0,∞[→]0,∞[ is a strictly convex function with a unique global minimum.
Indeed

f ′(t) := tp−1||x||pp − t−p
′−1||y||p

′

p′ , f ′′(t) > 0.

The unique stationary point is given by

tp+p
′

0 =
||y||p

′

p′

||x||pp
and

f(t0) =
(1

p
+

1

p′
)(
||x||

pp′
p+p′
p ||y||

pp′
p+p′

p′

)
= ||x||p||y||p′

Noting that f(t) ≥
∣∣〈x,y〉∣∣ (the first inequality), we proved Hölder’s inequality.

(b) Show that ||x||∞ defines norm on Rn.

Solution. 1. Positivity. ||x||∞ = max
1≤k≤n

|xk| = 0 if and only if |xk| = 0 for all k

which is equivalent to x = 0.
2. Homogeneity. For all λ ∈ R and all x ∈ Rn by homogeneity of the absolute value:

||λx||∞ = max
1≤k≤n

|λxk| = max
1≤k≤n

|λ||xk| = |λ| max
1≤k≤n

|xk| = |λ| ||x||∞

3. Triangular inequality. For all x,y ∈ Rn:

||x + y||∞ = max
1≤k≤n

|xk + yk| ≤ max
1≤k≤n

|xk|+ |yk|

≤ max
1≤k≤n

|xk|+ max
1≤k≤n

|yk|

= ||x||∞ + ||y||∞.

(c) Show that ||x||1 defines a norm on Rn.
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Solution. 1. Positivity. ||x||1 =

n∑
k=1

|xk| = 0 if and only if |xk| = 0 for all k which

is equivalent to x = 0.
2. Homogeneity. For all λ ∈ R and all x ∈ Rn by homogeneity of the absolute value:

||λx||1 =

n∑
k=1

|λxk| = |λ|
n∑
k=1

|xk| = |λ| ||x||1.

3. Triangular inequality. For all x,y ∈ Rn:

||x + y||1 =

n∑
k=1

|xk + yk| ≤
n∑
k=1

|xk|+ |yk|

= ||x||1 + ||y||1.

(d) Let 1 < p < ∞. Show that ||x||p defines a norm on Rn. To prove the triangular
inequality, use the convexity of the following function u 7→ |u|p. First show that for all
t ∈]0, 1[ and all x,y ∈ Rn:

||x + y||pp ≤ t1−p||x||pp + (1− t)1−p||y||pp.

Deduce the triangular inequality by finding the optimal t.

Solution. 1. Positivity. ||x||pp =
n∑
k=1

|xk|p = 0 if and only if |xk| = 0 for all k which

is equivalent to x = 0.
2. Homogeneity. For all λ ∈ R and all x ∈ Rn by homogeneity of the absolute value:

||λx||p =

( n∑
k=1

|λxk|p
) 1

p

= |λ|
( n∑
k=1

|xk|p
) 1

p

= |λ| ||x||p.

3. Triangular inequality. By convexity of the function u 7→ |u|p we have for all
xk, yk ∈ R and 0 < t < 1:

|xk + yk|p = |tt−1xk + (1− t)(1− t)−1yk|p

≤ t|t−1xk|p + (1− t)|(1− t)−1yk|p = t1−p|xk|p + (1− t)1−p|yk|p

hence, by taking the sum on k:

||x + y||pp ≤ t1−p||x||pp + (1− t)1−p||y||pp.

The function f :]0, 1[→]0,∞[ defined by

f(t) := t1−p||x||pp + (1− t)1−p||y||pp
is a strictly convex function with a unique global minimun. Indeed

f ′(t) := (p− 1)
(
− t−p||x||pp + (1− t)−p||y||pp

)
, f ′′(t) > 0.

The unique stationary point is given by

1− t0
t0

=
||y||p
||x||p

ie

t0 =
||x||p

||x||p + ||y||p
, 1− t0 =

||y||p
||x||p + ||y||p

and
f(t0) =

(
||x||p + ||y||p

)p ≥ ||x + y||pp.
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(e) Second proof of the triangular inequality. Let 1 < p <∞. Show that

||x + y||pp ≤
n∑
k=1

|xk||xk + yk|p−1 + |yk||xk + yk|p−1

and apply Hölder’s inequality.

Solution. Using Hölder’s inequality with p and p′ such that p′ =
p

p− 1
:

n∑
k=1

|xk||xk + yk|p−1 ≤
( n∑
k=1

|xk|p
) 1

p
( n∑
k=1

|xk + yk|p
) p−1

p

= ||x||p||x + y||p−1p

and

n∑
k=1

|yk||xk + yk|p−1 ≤
( n∑
k=1

|yk|p
) 1

p
( n∑
k=1

|xk + yk|p
) p−1

p

= ||y||p||x + y||p−1p

hence
||x + y||pp ≤ (||x||p + ||y||p)||x + y||p−1p

and so we get the triangular inequality.

(f) For all x ∈ Rn give lim
p→∞

||x||p.

Solution . Note that for all p ≥ 1 and all x ∈ Rn :

||x||∞ ≤ ||x||p ≤ n
1
p ||x||∞

hence by the squeeze theorem

lim
p→∞

||x||p = ||x||∞.

4. Subsets of Rn

(a) Let S = {(x, y) ∈ R2 : 0 < y < (1 + x2)e−|x|}. Give
◦
S, S̄ and ∂S. Then calculate the

area of S.

(b) Let T = {(x, y) ∈ R2 : 1 < x2 + 4y2 < 4}. Give
◦
T , T̄ et ∂T . Then calculate the area of

T .

(c) Consider the set of rational numbers Q ⊂ R. Give
◦
Q, Q̄ and ∂Q.

Solution a.
◦
S = S. The reason is essentially the strict inequalities in the definition of S

and the continuity of the boundaries given by the functions y = f(x) = (1 + x2)e−|x| and
y = 0. The rigourous proof consists in proving that for all point (x, y) ∈ S there exists a
ball Bε of center (x, y) and of radius ε > 0 such that Bε ⊂ S. Let then (x0, y0) ∈ S given.

• There exists h > 0 such that ]y0−h, y0+h[⊂ ]0, f(x0)[. Hence, the segment {x0}× ]y0−
h, y0 + h[ is in S.

• By continuity of f(x) = (1 + x2)e−|x| there exists δ > 0 such that f(x) > y0 + h for all
x ∈]x0 − δ, x0 + δ[.

• Hence, the rectangle ]x0 − δ, x0 + δ[×]y0 − h, y0 + h[ is in S.

• Choose ε = min(h, δ) for the radius of the ball (Euclidean).
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Then we have ∂S = {(x, y) ∈ R2 : 0 = y, or y = (1 + x2)e−|x|} and

S̄ = S ∪ ∂S = {(x, y) ∈ R2 : 0 ≤ y ≤ (1 + x2)e−|x|}

Calculation of the area:

Area(S) =

∫ ∞
−∞

(1 + x2)e−|x| dx = 2

∫ ∞
0

(1 + x2)e−|x| dx = 2Γ(1) + 2Γ(3) = 6

The domain S - Spiked Helmet.

Solution b.
◦
T = T , ∂T = {(x, y) ∈ R2 : 1 = x2 + 4y2, or x2 + 4y2 = 4} and

T̄ = T ∪ ∂T = {(x, y) ∈ R2 : 1 ≤ x2 + 4y2 ≤ 4}

Calculation of the area: The boundary of T is given by the two ellipses E(1, 1/2) and E(2, 1).
Note that E(1, 1/2) ⊂ E(2, 1). So

Area(T ) = 2π − π

2
=

3π

2
.

Solution c. By a result from the course Analyse I, the set Q is dense in R. Between two
real numbers there always exists a rational number and vice versa (see also exercises Analyse
I, chapter 1). Hence, all point of Q is a boundary point. So

◦
Q = ∅, ∂Q = Q̄ = R.

5. Let f : X → R be a continuous function on a metric space (X, dX). Show that for all c ∈ R:

(a) E = {x ∈ X : f(x) = c} is closed.

(b) F = {x ∈ X : f(x) ≤ c} is closed.

(c) G = {x ∈ X : f(x) < c} is open.

Solution. If E is empty, then E is closed. If E is not empty, then for all adherent points
x of E and for all sequences (xn)n of elements of E that converges to x: f(xn) = c for all n
and by continuity of f

c = lim
n→∞

f(xn) = f(x)

hence x ∈ E. For F it is the same idea (replace ”= c” by ”≤ c”). The set G is the
complementary set of the closed set {x ∈ X : f(x) ≥ c}, hence it is open.

6. Let (E, 〈·, ·〉) be an Euclidean space. Let v ∈ E, 〈v,v〉 = 1. Then

Px = 〈v,x〉v (1)

defines an orthogonal projector (it is the orthogonal projection on v). Show that P is
continuous.

Solution.
||Px||2 = 〈Px, Px〉 = 〈v,x〉2 ≤ ||x||2

by Cauchy-Schwarz’s inequality.
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