Solutions to Session of February 29, 2016

1. A property of the Euclidean norm. By the properties of the scalar product, we get

$$
\begin{aligned}
\|\mathbf{x} \pm \mathbf{y}\|_{2}^{2} & =\langle\mathbf{x} \pm \mathbf{y}, \mathbf{x} \pm \mathbf{y}\rangle \\
& =\langle\mathbf{x}, \mathbf{x}\rangle+\langle\mathbf{y}, \mathbf{y}\rangle \pm\langle\mathbf{x}, \mathbf{y}\rangle \pm\langle\mathbf{y}, \mathbf{x}\rangle \\
& =\|\mathbf{x}\|_{2}^{2}+\|\mathbf{y}\|_{2}^{2} \pm\langle\mathbf{x}, \mathbf{y}\rangle \pm\langle\mathbf{y}, \mathbf{x}\rangle
\end{aligned}
$$

and hence

$$
\|\mathbf{x}+\mathbf{y}\|_{2}^{2}+\|\mathbf{x}-\mathbf{y}\|_{2}^{2}-2\|\mathbf{x}\|_{2}^{2}-2\|\mathbf{y}\|_{2}^{2}=0
$$

We also call this identity the parallelogram identity. Why?
2. Cauchy-Schwarz's inequality in a Euclidean space. Let $(E,\langle\cdot, \cdot\rangle)$ be a Euclidean space. Show that for all $\mathbf{x}, \mathbf{y} \in E$:

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \cdot \sqrt{\langle\mathbf{y}, \mathbf{y}\rangle} .
$$

Solution. For all $\mathbf{x}, \mathbf{y} \in E$ and λ real

$$
0 \leq\langle\mathbf{x}-\lambda \mathbf{y}, \mathbf{x}-\lambda \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle-2 \lambda\langle\mathbf{x}, \mathbf{y}\rangle+\lambda^{2}\langle\mathbf{y}, \mathbf{y}\rangle
$$

We minimize compared to λ : if $\mathbf{y}=\mathbf{0}$ there is nothing to prove (the two members of CauchySchwarz's inequality are equal to zero). If $\mathbf{y} \neq \mathbf{0}$, then $\langle\mathbf{y}, \mathbf{y}\rangle>0$ by positivity of the scalar product, and the minimum of this polynomial of degree 2 in λ is obtained in $\lambda=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\langle\mathbf{y}, \mathbf{y}\rangle}$. We get

$$
0 \leq\langle\mathbf{x}, \mathbf{x}\rangle-\frac{\langle\mathbf{x}, \mathbf{y}\rangle^{2}}{\langle\mathbf{y}, \mathbf{y}\rangle}
$$

hence Cauchy-Schwarz's inequality.
3. Hölder's inequality and norms on $\mathbb{R}^{\mathbf{n}}$. For $\mathbf{x} \in \mathbb{R}^{n}$ and $p \geq 1$ let

$$
\|\mathbf{x}\|_{p}=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}} .
$$

Moreover, let

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq k \leq n}\left|x_{k}\right| .
$$

(a) Show Hölder's inequality: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ (with the convention that if $p=1$, then $p^{\prime}=\infty$ and vice versa):

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{p^{\prime}} .
$$

(Hint: use Young's inequality: for p and p^{\prime} satisfying $1 / p+1 / p^{\prime}=1$

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{p^{\prime}}}{p^{\prime}}, \quad \text { for all } a, b \in \mathbb{R}
$$

to show that for all $t>0$:

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \frac{t^{p}\|\mathbf{x}\|_{p}^{p}}{p}+\frac{t^{-p^{\prime}}\|\mathbf{y}\|_{p^{\prime}}^{p^{\prime}}}{p^{\prime}}
$$

and deduce Hölder's inequality from it.)
Solution. Note first that we can assume $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$ since otherwise the inequality is trivial (the two members are equal to zero). By the triangular inequality for the absolute value, we derive the basic inequality:

$$
|\langle\mathbf{x}, \mathbf{y}\rangle|=\left|\sum_{k=1}^{n} x_{k} y_{k}\right| \leq \sum_{k=1}^{n}\left|x_{k}\right| \cdot\left|y_{k}\right|
$$

Hölder's inequality follows directly for $p=1$:

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|_{1}\|\mathbf{y}\|_{\infty}
$$

Let $p>1$. By Young's inequality, for all $t>0$ and all k :

$$
\left|x_{k}\right| \cdot\left|y_{k}\right|=\left|t x_{k}\right| \cdot\left|t^{-1} y_{k}\right| \leq \frac{t^{p}\left|x_{k}\right|^{p}}{p}+\frac{t^{-p^{\prime}}\left|y_{k}\right|^{p^{\prime}}}{p^{\prime}}, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Hence, replacing the sums by the norms:

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \frac{t^{p}\|\mathbf{x}\|_{p}^{p}}{p}+\frac{t^{-p^{\prime}}\|\mathbf{y}\|_{p^{\prime}}^{p^{\prime}}}{p^{\prime}}
$$

If we define

$$
f(t):=\frac{t^{p}\|\mathbf{x}\|_{p}^{p}}{p}+\frac{t^{-p^{\prime}}\|\mathbf{y}\|_{p^{\prime}}^{p^{\prime}}}{p^{\prime}}
$$

then $f:] 0, \infty[\rightarrow] 0, \infty[$ is a strictly convex function with a unique global minimum. Indeed

$$
f^{\prime}(t):=t^{p-1}\|\mathbf{x}\|_{p}^{p}-t^{-p^{\prime}-1}\|\mathbf{y}\|_{p^{\prime}}^{p^{\prime}}, \quad f^{\prime \prime}(t)>0
$$

The unique stationary point is given by

$$
t_{0}^{p+p^{\prime}}=\frac{\|\mathbf{y}\|_{p^{\prime}}^{p^{\prime}}}{\|\mathbf{x}\|_{p}^{p}}
$$

and

$$
f\left(t_{0}\right)=\left(\frac{1}{p}+\frac{1}{p^{\prime}}\right)\left(\|\mathbf{x}\|_{p}^{\frac{p p^{\prime}}{p+p^{\prime}}}\|\mathbf{y}\|_{p^{\prime}}^{\frac{p p^{\prime}}{p+p^{\prime}}}\right)=\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{p^{\prime}}
$$

Noting that $f(t) \geq|\langle\mathbf{x}, \mathbf{y}\rangle|$ (the first inequality), we proved Hölder's inequality.
(b) Show that $\|\mathbf{x}\|_{\infty}$ defines norm on \mathbb{R}^{n}.

Solution. 1. Positivity. $\|\mathbf{x}\|_{\infty}=\max _{1 \leq k \leq n}\left|x_{k}\right|=0$ if and only if $\left|x_{k}\right|=0$ for all k which is equivalent to $\mathbf{x}=\mathbf{0}$.
2. Homogeneity. For all $\lambda \in \mathbb{R}$ and all $\mathrm{x} \in \mathbb{R}^{n}$ by homogeneity of the absolute value:

$$
\|\lambda \mathbf{x}\|_{\infty}=\max _{1 \leq k \leq n}\left|\lambda x_{k}\right|=\max _{1 \leq k \leq n}|\lambda|\left|x_{k}\right|=|\lambda| \max _{1 \leq k \leq n}\left|x_{k}\right|=|\lambda|\|\mathbf{x}\|_{\infty}
$$

3. Triangular inequality. For all $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|_{\infty} & =\max _{1 \leq k \leq n}\left|x_{k}+y_{k}\right| \leq \max _{1 \leq k \leq n}\left|x_{k}\right|+\left|y_{k}\right| \\
& \leq \max _{1 \leq k \leq n}\left|x_{k}\right|+\max _{1 \leq k \leq n}\left|y_{k}\right| \\
& =\|\mathbf{x}\|_{\infty}+\|\mathbf{y}\|_{\infty} .
\end{aligned}
$$

(c) Show that $\|\mathbf{x}\|_{1}$ defines a norm on \mathbb{R}^{n}.

Solution. 1. Positivity. $\|\mathbf{x}\|_{1}=\sum_{k=1}^{n}\left|x_{k}\right|=0$ if and only if $\left|x_{k}\right|=0$ for all k which is equivalent to $\mathbf{x}=\mathbf{0}$.
2. Homogeneity. For all $\lambda \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^{n}$ by homogeneity of the absolute value:

$$
\|\lambda \mathbf{x}\|_{1}=\sum_{k=1}^{n}\left|\lambda x_{k}\right|=|\lambda| \sum_{k=1}^{n}\left|x_{k}\right|=|\lambda|\|\mathbf{x}\|_{1} .
$$

3. Triangular inequality. For all $\mathbf{x}, \mathrm{y} \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|_{1} & =\sum_{k=1}^{n}\left|x_{k}+y_{k}\right| \leq \sum_{k=1}^{n}\left|x_{k}\right|+\left|y_{k}\right| \\
& =\|\mathbf{x}\|_{1}+\|\mathbf{y}\|_{1} .
\end{aligned}
$$

(d) Let $1<p<\infty$. Show that $\|\mathbf{x}\|_{p}$ defines a norm on \mathbb{R}^{n}. To prove the triangular inequality, use the convexity of the following function $u \mapsto|u|^{p}$. First show that for all $t \in] 0,1\left[\right.$ and all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$:

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq t^{1-p}\|\mathbf{x}\|_{p}^{p}+(1-t)^{1-p}\|\mathbf{y}\|_{p}^{p} .
$$

Deduce the triangular inequality by finding the optimal t.
Solution. 1. Positivity. $\|\mathbf{x}\|_{p}^{p}=\sum_{k=1}^{n}\left|x_{k}\right|^{p}=0$ if and only if $\left|x_{k}\right|=0$ for all k which is equivalent to $\mathbf{x}=\mathbf{0}$.
2. Homogeneity. For all $\lambda \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^{n}$ by homogeneity of the absolute value:

$$
\|\lambda \mathbf{x}\|_{p}=\left(\sum_{k=1}^{n}\left|\lambda x_{k}\right|^{p}\right)^{\frac{1}{p}}=|\lambda|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}=|\lambda|\|\mathbf{x}\|_{p} .
$$

3. Triangular inequality. By convexity of the function $u \mapsto|u|^{p}$ we have for all $x_{k}, y_{k} \in \mathbb{R}$ and $0<t<1$:

$$
\begin{aligned}
\left|x_{k}+y_{k}\right|^{p} & =\left|t t^{-1} x_{k}+(1-t)(1-t)^{-1} y_{k}\right|^{p} \\
& \leq t\left|t^{-1} x_{k}\right|^{p}+(1-t)\left|(1-t)^{-1} y_{k}\right|^{p}=t^{1-p}\left|x_{k}\right|^{p}+(1-t)^{1-p}\left|y_{k}\right|^{p}
\end{aligned}
$$

hence, by taking the sum on k :

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq t^{1-p}\|\mathbf{x}\|_{p}^{p}+(1-t)^{1-p}\|\mathbf{y}\|_{p}^{p}
$$

The function $f:] 0,1[\rightarrow] 0, \infty[$ defined by

$$
f(t):=t^{1-p}\|\mathbf{x}\|_{p}^{p}+(1-t)^{1-p}\|\mathbf{y}\|_{p}^{p}
$$

is a strictly convex function with a unique global minimun. Indeed

$$
f^{\prime}(t):=(p-1)\left(-t^{-p}\|\mathbf{x}\|_{p}^{p}+(1-t)^{-p}\|\mathbf{y}\|_{p}^{p}\right), \quad f^{\prime \prime}(t)>0 .
$$

The unique stationary point is given by

$$
\frac{1-t_{0}}{t_{0}}=\frac{\|\mathbf{y}\|_{p}}{\|\mathbf{x}\|_{p}}
$$

ie

$$
t_{0}=\frac{\|\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}}, \quad 1-t_{0}=\frac{\|\mathbf{y}\|_{p}}{\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}}
$$

and

$$
f\left(t_{0}\right)=\left(\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}\right)^{p} \geq\|\mathbf{x}+\mathbf{y}\|_{p}^{p}
$$

(e) Second proof of the triangular inequality. Let $1<p<\infty$. Show that

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq \sum_{k=1}^{n}\left|x_{k}\right|\left|x_{k}+y_{k}\right|^{p-1}+\left|y_{k} \| x_{k}+y_{k}\right|^{p-1}
$$

and apply Hölder's inequality.

Solution. Using Hölder's inequality with p and p^{\prime} such that $p^{\prime}=\frac{p}{p-1}$:

$$
\sum_{k=1}^{n}\left|x_{k}\right|\left|x_{k}+y_{k}\right|^{p-1} \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p}\right)^{\frac{p-1}{p}}=\|\mathbf{x}\|_{p}\|\mathbf{x}+\mathbf{y}\|_{p}^{p-1}
$$

and

$$
\sum_{k=1}^{n}\left|y_{k}\left\|x_{k}+\left.y_{k}\right|^{p-1} \leq\left(\sum_{k=1}^{n}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p}\right)^{\frac{p-1}{p}}=\right\| \mathbf{y}\left\|_{p}\right\| \mathbf{x}+\mathbf{y} \|_{p}^{p-1}\right.
$$

hence

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq\left(\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}\right)\|\mathbf{x}+\mathbf{y}\|_{p}^{p-1}
$$

and so we get the triangular inequality.
(f) For all $\mathbf{x} \in \mathbb{R}^{n}$ give $\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}$.

Solution . Note that for all $p \geq 1$ and all $\mathbf{x} \in \mathbb{R}^{n}:$

$$
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{p} \leq n^{\frac{1}{p}}\|\mathbf{x}\|_{\infty}
$$

hence by the squeeze theorem

$$
\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}=\|\mathbf{x}\|_{\infty}
$$

4. Subsets of \mathbb{R}^{n}

(a) Let $S=\left\{(x, y) \in \mathbb{R}^{2}: 0<y<\left(1+x^{2}\right) e^{-|x|}\right\}$. Give $\stackrel{\circ}{S}, \bar{S}$ and ∂S. Then calculate the area of S.
(b) Let $T=\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+4 y^{2}<4\right\}$. Give $\stackrel{\circ}{T}, \bar{T}$ et ∂T. Then calculate the area of T.
(c) Consider the set of rational numbers $\mathbb{Q} \subset \mathbb{R}$. Give $\stackrel{\circ}{\mathbb{Q}}, \overline{\mathbb{Q}}$ and $\partial \mathbb{Q}$.

Solution a. $\quad \stackrel{\circ}{S}=S$. The reason is essentially the strict inequalities in the definition of S and the continuity of the boundaries given by the functions $y=f(x)=\left(1+x^{2}\right) e^{-|x|}$ and $y=0$. The rigourous proof consists in proving that for all point $(x, y) \in S$ there exists a ball B_{ϵ} of center (x, y) and of radius $\epsilon>0$ such that $B_{\epsilon} \subset S$. Let then $\left(x_{0}, y_{0}\right) \in S$ given.

- There exists $h>0$ such that $] y_{0}-h, y_{0}+h[\subset] 0, f\left(x_{0}\right)\left[\right.$. Hence, the segment $\left.\left\{x_{0}\right\} \times\right] y_{0}-$ $h, y_{0}+h[$ is in S.
- By continuity of $f(x)=\left(1+x^{2}\right) e^{-|x|}$ there exists $\delta>0$ such that $f(x)>y_{0}+h$ for all $x \in] x_{0}-\delta, x_{0}+\delta[$.
- Hence, the rectangle $] x_{0}-\delta, x_{0}+\delta[\times] y_{0}-h, y_{0}+h[$ is in S.
- Choose $\epsilon=\min (h, \delta)$ for the radius of the ball (Euclidean).

Then we have $\partial S=\left\{(x, y) \in \mathbb{R}^{2}: 0=y\right.$, or $\left.y=\left(1+x^{2}\right) e^{-|x|}\right\}$ and

$$
\bar{S}=S \cup \partial S=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq y \leq\left(1+x^{2}\right) e^{-|x|}\right\}
$$

Calculation of the area:

$$
\operatorname{Area}(S)=\int_{-\infty}^{\infty}\left(1+x^{2}\right) e^{-|x|} d x=2 \int_{0}^{\infty}\left(1+x^{2}\right) e^{-|x|} d x=2 \Gamma(1)+2 \Gamma(3)=6
$$

The domain S - Spiked Helmet.

Solution b. $\quad \stackrel{\circ}{T}=T, \partial T=\left\{(x, y) \in \mathbb{R}^{2}: 1=x^{2}+4 y^{2}\right.$, or $\left.x^{2}+4 y^{2}=4\right\}$ and

$$
\bar{T}=T \cup \partial T=\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x^{2}+4 y^{2} \leq 4\right\}
$$

Calculation of the area: The boundary of T is given by the two ellipses $E(1,1 / 2)$ and $E(2,1)$. Note that $E(1,1 / 2) \subset E(2,1)$. So

$$
\operatorname{Area}(T)=2 \pi-\frac{\pi}{2}=\frac{3 \pi}{2}
$$

Solution c. By a result from the course Analyse I, the set \mathbb{Q} is dense in \mathbb{R}. Between two real numbers there always exists a rational number and vice versa (see also exercises Analyse I, chapter 1). Hence, all point of \mathbb{Q} is a boundary point. So

$$
\stackrel{\circ}{\mathbb{Q}}=\emptyset, \quad \partial \mathbb{Q}=\overline{\mathbb{Q}}=\mathbb{R} .
$$

5. Let $f: X \rightarrow \mathbb{R}$ be a continuous function on a metric space $\left(X, d_{X}\right)$. Show that for all $c \in \mathbb{R}$:
(a) $E=\{\mathbf{x} \in X: f(\mathbf{x})=c\}$ is closed.
(b) $F=\{\mathbf{x} \in X: f(\mathbf{x}) \leq c\}$ is closed.
(c) $G=\{\mathbf{x} \in X: f(\mathbf{x})<c\}$ is open.

Solution. If E is empty, then E is closed. If E is not empty, then for all adherent points \mathbf{x} of E and for all sequences $\left(\mathbf{x}_{n}\right)_{n}$ of elements of E that converges to $\mathbf{x}: f\left(\mathbf{x}_{n}\right)=c$ for all n and by continuity of f

$$
c=\lim _{n \rightarrow \infty} f\left(\mathbf{x}_{n}\right)=f(\mathbf{x})
$$

hence $\mathbf{x} \in E$. For F it is the same idea (replace $"=c$ " by " $\leq c$ "). The set G is the complementary set of the closed set $\{\mathbf{x} \in X: f(\mathbf{x}) \geq c\}$, hence it is open.
6. Let $(E,\langle\cdot, \cdot\rangle)$ be an Euclidean space. Let $\mathbf{v} \in E,\langle\mathbf{v}, \mathbf{v}\rangle=1$. Then

$$
\begin{equation*}
P \mathbf{x}=\langle\mathbf{v}, \mathbf{x}\rangle \mathbf{v} \tag{1}
\end{equation*}
$$

defines an orthogonal projector (it is the orthogonal projection on \mathbf{v}). Show that P is continuous.

Solution.

$$
\|P \mathbf{x}\|^{2}=\langle P \mathbf{x}, P \mathbf{x}\rangle=\langle\mathbf{v}, \mathbf{x}\rangle^{2} \leq\|\mathbf{x}\|^{2}
$$

by Cauchy-Schwarz's inequality.

