

Exercise Session, February 29, 2016

1. A property of the Euclidean norm. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $||\cdot||_2$ be the Euclidean norm, i.e.

$$||\mathbf{x}||_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}}$$

for all $\mathbf{x} \in \mathbb{R}^n$. Calculate

$$||\mathbf{x} + \mathbf{y}||_2^2 + ||\mathbf{x} - \mathbf{y}||_2^2 - 2||\mathbf{x}||_2^2 - 2||\mathbf{y}||_2^2$$

2. Cauchy-Schwarz's inequality in the Euclidean space. Let $(E, \langle \cdot, \cdot \rangle)$ be a Euclidean space. Show that for all $\mathbf{x}, \mathbf{y} \in E$:

$$\left| \langle \mathbf{x}, \mathbf{y} \rangle \right| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \cdot \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}.$$

3. Hölder's inequality and norms on \mathbb{R}^{n} . For $\mathbf{x} \in \mathbb{R}^{n}$ and $p \geq 1$ let

$$||\mathbf{x}||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}.$$

Moreover, let

$$||\mathbf{x}||_{\infty} = \max_{1 \le k \le n} |x_k|.$$

(a) Show Hölder's inequality: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\frac{1}{p} + \frac{1}{p'} = 1$ (with the convention that if p = 1, then $p' = \infty$ and vice versa):

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}||_p ||\mathbf{y}||_{p'}.$$

(Hint: use Young's inequality: for p and p' satisfying 1/p + 1/p' = 1

$$ab \le \frac{a^p}{p} + \frac{b^{p'}}{p'}, \quad \text{for all } a, b \in \mathbb{R}$$

to show that for all t > 0:

$$\left|\left\langle \mathbf{x}, \mathbf{y} \right
angle
ight| \leq rac{t^p ||\mathbf{x}||_p^p}{p} + rac{t^{-p'} ||\mathbf{y}||_{p'}^{p'}}{p'}$$

and deduce Hölder's inequality from it.)

- (b) Show that $||\mathbf{x}||_{\infty}$ defines a norm on \mathbb{R}^n .
- (c) Show that $||\mathbf{x}||_1$ defines a norm on \mathbb{R}^n .

¹This is a challenging exercise were you prove a cornerstone result.

(d) Let $1 . Show that <math>||\mathbf{x}||_p$ defines a norm on \mathbb{R}^n . To show the triangular inequality use the convexity of the following function $u \mapsto |u|^p$. First show that for all $t \in]0,1[$ and all $\mathbf{x},\mathbf{y} \in \mathbb{R}^n$

$$||\mathbf{x} + \mathbf{y}||_p^p \le t^{1-p} ||\mathbf{x}||_p^p + (1-t)^{1-p} ||\mathbf{y}||_p^p$$

Deduce from it the triangular inequality by finding the optimal t.

(e) Second proof of the triangular inequality. Let 1 . Show that

$$||\mathbf{x} + \mathbf{y}||_p^p \le \sum_{k=1}^n |x_k||x_k + y_k|^{p-1} + |y_k||x_k + y_k|^{p-1}$$

and use Hölder's inequality.

(f) For all $\mathbf{x} \in \mathbb{R}^n$, give $\lim_{p \to \infty} ||\mathbf{x}||_p$.

4. Subsets of \mathbb{R}^n

- (a) Let $S = \{(x,y) \in \mathbb{R}^2 : 0 < y < (1+x^2)e^{-|x|}\}$. Give $\overset{\circ}{S}, \bar{S}$ and ∂S . Then calculate the area of S.
- (b) Let $T = \{(x,y) \in \mathbb{R}^2 : 1 < x^2 + 4y^2 < 4\}$. Give $\overset{\circ}{T}, \overline{T}$ and ∂T . Then calculate the area of T.
- (c) Consider the set of rational numbers $\mathbb{Q} \subset \mathbb{R}$. Give $\mathring{\mathbb{Q}}, \bar{\mathbb{Q}}$ and $\partial \mathbb{Q}$.

Useful formulas.

las.
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad \Gamma(n+1) = n!$$

$$\int_0^x \sqrt{1 - t^2} dt = \frac{x\sqrt{1 - x^2} + \arcsin x}{2}$$

$$E_{a,b} = \{(x, y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}, \quad a, b > 0 \quad \text{Area}(E_{a,b}) = \pi ab.$$

- 5. Let $f: X \to \mathbb{R}$ be a continuous function on a metric space (X, d_X) . Show that for all $c \in \mathbb{R}$:
 - (a) $E = {\mathbf{x} \in X : f(\mathbf{x}) = c}$ is closed.
 - (b) $F = {\mathbf{x} \in X : f(\mathbf{x}) \le c}$ is closed.
 - (c) $G = {\mathbf{x} \in X : f(\mathbf{x}) < c}$ is open.
- 6. Let $(E, \langle \cdot, \cdot \rangle)$ be a Euclidean space. Let $\mathbf{v} \in E, \langle \mathbf{v}, \mathbf{v} \rangle = 1$. Then

$$P\mathbf{x} = \langle \mathbf{v}, \mathbf{x} \rangle \mathbf{v} \tag{1}$$

defines an orthogonal projector (it is the orthogonal projection on \mathbf{v}). Show that P is continuous.