Exercise Session, February 29, 2016

1. A property of the Euclidean norm. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\|\cdot\|_{2}$ be the Euclidean norm, i.e.

$$
\|\mathbf{x}\|_{2}=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}=\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{\frac{1}{2}}
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$. Calculate

$$
\|\mathbf{x}+\mathbf{y}\|_{2}^{2}+\|\mathbf{x}-\mathbf{y}\|_{2}^{2}-2\|\mathbf{x}\|_{2}^{2}-2\|\mathbf{y}\|_{2}^{2} .
$$

2. Cauchy-Schwarz's inequality in the Euclidean space. Let $(E,\langle\cdot, \cdot\rangle)$ be a Euclidean space. Show that for all $\mathbf{x}, \mathbf{y} \in E$:

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \cdot \sqrt{\langle\mathbf{y}, \mathbf{y}\rangle} .
$$

3. Hölder's inequality and norms on $\mathbb{R}^{\mathbf{n}}$. ${ }^{1}$ For $\mathbf{x} \in \mathbb{R}^{n}$ and $p \geq 1$ let

$$
\|\mathbf{x}\|_{p}=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}} .
$$

Moreover, let

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq k \leq n}\left|x_{k}\right| .
$$

(a) Show Hölder's inequality: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ (with the convention that if $p=1$, then $p^{\prime}=\infty$ and vice versa):

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{p^{\prime}} .
$$

(Hint: use Young's inequality: for p and p^{\prime} satisfying $1 / p+1 / p^{\prime}=1$

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{p^{\prime}}}{p^{\prime}}, \quad \text { for all } a, b \in \mathbb{R}
$$

to show that for all $t>0$:

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \frac{t^{p}\|\mathbf{x}\|_{p}^{p}}{p}+\frac{t^{-p^{\prime}}\|\mathbf{y}\|_{p^{\prime}}^{p^{\prime}}}{p^{\prime}}
$$

and deduce Hölder's inequality from it.)
(b) Show that $\|\mathbf{x}\|_{\infty}$ defines a norm on \mathbb{R}^{n}.
(c) Show that $\|\mathbf{x}\|_{1}$ defines a norm on \mathbb{R}^{n}.

[^0](d) Let $1<p<\infty$. Show that $\|\mathbf{x}\|_{p}$ defines a norm on \mathbb{R}^{n}. To show the triangular inequality use the convexity of the following function $u \mapsto|u|^{p}$. First show that for all $t \in] 0,1\left[\right.$ and all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$
$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq t^{1-p}\|\mathbf{x}\|_{p}^{p}+(1-t)^{1-p}\|\mathbf{y}\|_{p}^{p} .
$$

Deduce from it the triangular inequality by finding the optimal t.
(e) Second proof of the triangular inequality. Let $1<p<\infty$. Show that

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq \sum_{k=1}^{n}\left|x_{k}\right|\left|x_{k}+y_{k}\right|^{p-1}+\left|y_{k}\right|\left|x_{k}+y_{k}\right|^{p-1}
$$

and use Hölder's inequality.
(f) For all $\mathbf{x} \in \mathbb{R}^{n}$, give $\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}$.
4. Subsets of \mathbb{R}^{n}
(a) Let $S=\left\{(x, y) \in \mathbb{R}^{2}: 0<y<\left(1+x^{2}\right) e^{-|x|}\right\}$. Give $\stackrel{\circ}{S}, \bar{S}$ and ∂S. Then calculate the area of S.
(b) Let $T=\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+4 y^{2}<4\right\}$. Give $\stackrel{\circ}{T}, \bar{T}$ and ∂T. Then calculate the area of T.
(c) Consider the set of rational numbers $\mathbb{Q} \subset \mathbb{R}$. Give $\stackrel{\circ}{\mathbb{Q}}, \overline{\mathbb{Q}}$ and $\partial \mathbb{Q}$.

Useful formulas.

$$
\begin{gathered}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t, \quad \Gamma(n+1)=n! \\
\int^{x} \sqrt{1-t^{2}} d t=\frac{x \sqrt{1-x^{2}}+\arcsin x}{2} \\
E_{a, b}=\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}, \quad a, b>0 \quad \text { Area }\left(E_{a, b}\right)=\pi a b .
\end{gathered}
$$

5. Let $f: X \rightarrow \mathbb{R}$ be a continuous function on a metric space $\left(X, d_{X}\right)$. Show that for all $c \in \mathbb{R}$:
(a) $E=\{\mathbf{x} \in X: f(\mathbf{x})=c\}$ is closed.
(b) $F=\{\mathbf{x} \in X: f(\mathbf{x}) \leq c\}$ is closed.
(c) $G=\{\mathbf{x} \in X: f(\mathbf{x})<c\}$ is open.
6. Let $(E,\langle\cdot, \cdot\rangle)$ be a Euclidean space. Let $\mathbf{v} \in E,\langle\mathbf{v}, \mathbf{v}\rangle=1$. Then

$$
\begin{equation*}
P \mathbf{x}=\langle\mathbf{v}, \mathbf{x}\rangle \mathbf{v} \tag{1}
\end{equation*}
$$

defines an orthogonal projector (it is the orthogonal projection on \mathbf{v}). Show that P is continuous.

[^0]: ${ }^{1}$ This is a challenging exercise were you prove a cornerstone result.

