Analysis II Prof. Jan Hesthaven Spring Semester 2015–2016

Exercise Session, May 30, 2016

1. Find the general solution of the following systems of differential equations and specify the shape of the phase portrait.

(a)

(b)

$$\frac{dt}{dt} \mathbf{u} = \begin{pmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{pmatrix} \mathbf{u}$$

 $\frac{d}{dt}\mathbf{u} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\mathbf{u}$

(c)

$$\frac{d}{dt}\mathbf{u} = \begin{pmatrix} -1/2 & 1\\ -1 & -1/2 \end{pmatrix} \mathbf{u}$$

- 2. Solve the following Cauchy problem:
 - (a) y''(t) + 2y'(t) + y(t) = 0, and y(0) = 1, y'(0) = 0
 - (b) y''(t) + 2y'(t) + 5y(t) = 0, and y(0) = 3, y'(0) = 1
 - (c) y''(t) + 2y'(t) + 0.36y(t) = 0, and y(0) = 1, y'(0) = 0
- 3. For each of the following, write the general solution of the differential equation by solving the homogeneous equation and finding the particular solution.
 - (a) $y''(t) + y'(t) 2y(t) = e^{3t}$
 - (b) $y''(t) 3y'(t) = e^{3t}$
 - (c) $y''(t) 2y'(t) + 2y(t) = e^{-t}\cos(t)$
 - (d) $y''(t) + 2y'(t) + y(t) = 8e^{-t}$
- 4. Bifurcation. Consider the parametric linear system of differential equations:

$$\frac{d\mathbf{u}}{dt} = \begin{pmatrix} -1 & -1\\ -P & -1 \end{pmatrix} \mathbf{u}$$

- (a) As P varies in the interval] −∞,∞[, how many times does the phase portrait change? Identify the types of the phase portrait.
- (b) Write the general solution for P = 0 and draw the phase portraits.
- 5. A tank contains 1000 liters of brine (salty water) with 15kg of dissolved salt. A stream of salty water enters the tank with salt density of $0.025 \ kg/L$ at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate (10 L/min). How much salt is in the tank after t minutes?