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Solutions to Exercise Session, May 23, 2016

1. Calculate ∫∫
R2

1

(1 + x2 + (y − x)2)2
dxdy.

Solution. By invariance under translations∫∫
R2

1

(1 + x2 + (y − x)2)2
dxdy =

∫∫
R2

1

(1 + x2 + y2)2
dxdy

Using polar coordinates x = r cos θ, y = r sin θ we get∫∫
R2

1

(1 + x2 + (y − x)2)2
dxdy = 2π

∫ ∞
0

r

(1 + r2)2
dr = π

∫ ∞
0

− d

dr

1

1 + r2
dr = π.

2. Calculate ∫∫∫
R3

e−x
2−2y2−3z2

dxdydz.

Solution.∫∫∫
R3

e−x
2−2y2−3z2

dxdydz =

∫
R
e−x

2

dx

∫
R
e−2y

2

dy

∫
R
e−3z

2

dz

=
1√
2

∫
R
e−

x2

2 dx
1

2

∫
R
e−

y2

2 dy
1√
6

∫
R
e−

z2

2 dz

=
(2π)

3
2

4
√

3
=
π

3
2

√
6

=
π

3
2

√
6

6
.

3. Let
E = {(x, y, z) ∈ R3 : x ∈ [0, 1], y2 + z2 ≤ x2}

Describe E and give |E| = Vol(E).

Solution. The set E represents a cone around the axis x. The summit is (0, 0, 0).

|E| = π

∫ 1

0

x2 dx =
π

3
.

4. For the differential equation:
dy/dx = 9x2y

find the general solution.

(a) y(x) = Ae3x
3

(b) y(x) = Ae3x
4

(c) y(x) = Aex
2

(d) y(x) = Aex
3



Solution. The correct answer is (a). By separating the variables, the equation becomes:

dy

y
= 9x2dx

and after integrating both sides we get:

ln y = 3x3 + C

and so y = Ae3x
3

.

5. Suppose that y0 satisfies:

(x2 + 9)dy/dx = xy, y(0) = 3.

Find the value of y0(9).

(a) y0(9) = 4
√

10

(b) y0(9) = 3
√

10

(c) y0(9) = 40

(d) y0(9) = 3
√

17

Solution. The correct answer is (b). The general solution to the equation can be found by
separation of variables:

dy

y
=

dx

x2 + 9

and after integrating both sides we get y0 = A(x2 +9)1/2. If we require y0(0) = 3 then A = 1
and hence y0(9) = 3

√
10.

6. Suppose that y0 satisfies:

(x+ 3)dy/dx = y − 1, y(1) = 2.

Find the value of y0(4).

(a) y0(4) = 7/2

(b) y0(4) = −1

(c) y0(4) = 3

(d) y0(4) = 11/4

Solution. The correct answer is (d). The general solution to the equation can be found
by separation of variables:

dy

y − 1
=

1

x+ 3
dx

and after integrating both sides we get y0 = 1 + A(x + 3). If we require y0(1) = 2 then
A = 1/4 and hence y0(4) = 11/4.

7. For the differential equation:

dy/dx =
e5x

6y5

find the general solution.

(a) y(x) = ± 5
√
e5x/5 + C

(b) y(x) = ± 5
√
e5x/5 + C

(c) y(x) = ± 6
√
e5x/5 + C

(d) y(x) = ± 6
√
e5x/5 + C
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Solution. The correct answer is (c). By separating the variables, the equation becomes:

6y5dy = e5xdx

and after integrating both sides we get:

y6 = e5x/5 + C

and so y(x) = ± 6
√
e5x/5 + C.

8. Find the general solution of the equation:

2ydy/dx = 9x.

(a) y = ±
√

9
2x

2 + C

(b) y = ±
√

9
2x

2 + C

(c) y = ±
√

9
2x

2

(d) y = ±
√

2
9x

2 + C

Solution. The correct answer is (a). If we separate the variables we get:

2ydy = 9xdx

which integrates to 2y2 = 9x2 + C from which we get (a).

9. The solution y(x) of the differential equation (x2 + 9)y′ + xy − xy2 = 0 for x ∈ R with the
initial condition y(0) = 1/4 also satisfies:

(a) y(4) = 1/6

(b) y(4) = −1/4

(c) y(4) = 6

(d) y(4) = 1

Solution. The correct answer is (b). If we separate the variables we get:

dy

y2 − y
=

x dx

x2 + 9

We have ∫
dy

y2 − y
=

∫
1

y − 1
− 1

y
dy = ln(

y − 1

y
) + C1,

y − 1

y
> 0

and ∫
x

x2 + 9
dx =

1

2
ln(x2 + 9) + C2

If we put everything together we get

ln(
y − 1

y
) =

1

2
ln(x2 + 9) + C =⇒ (

y − 1

y
)2 = A(x2 + 9)

If we use the initial condition y(0) = 1/4 we get that A = 1 and finally for we can compute
y(4),

(
y − 1

y
)2 = 25 =⇒ y(4) = 1/6 or y(4) = −1/4

where y = −1/4 is the acceptable solution.

10. Find the general solution of the following equations

(a) y′ − 3y
x+1 = (x+ 1)4

(b) cos(x)y′ + sin(x)y = 2 cos3(x) sin(x)− 1
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Solution.

(a) The differential equation is of the form y′+P (x)y = Q(x). We first find the integrating
factor

I = e
∫
P dx = e

∫ −3
x+1 dx = e−3 ln(x+1) = eln(x+1)−3

=
1

(x+ 1)3

We multiply both sides of differential equation with I to get

1

(x+ 1)3
y′ − 3y

(x+ 1)4
= (x+ 1)

by integrating both sides we get

y

(x+ 1)3
=

1

2
x2 + x+ C

So the general solution is

y = (x+ 1)3(
1

2
x2 + x+ C)

(b) We first write the differential equations in the form of y′ + P (x)y = Q(x):

y′ +
sin(x)

cos(x)
y = 2 cos2(x) sin(s)− 1

cos(x)

Now we find the integral factor

I = e
∫
P (x) dx = e

∫ sin(x)
cos(x) dx = e− ln | cos(x)| =

1

cos(x)

Now we multiply both sides of the differential equation with I

y′

cos(x)
+

sin(x)

cos2(x)
= 2 sin(x) cos(x)− 1

cos2(x)

Taking the integral of both sides yields

y

cos(x)
= −1

2
cos(x)− tan(x) + C

So the general solution is

y = −1

2
cos(x) cos(2x)− sin(x) + C cos(x)

11. For each of the following differential equations check if the solution exists and is unique.

(a) y′ = 1 + y2, y(0) = 0

(b) y′ = 2y
x , y(a) = b

solve the differential equation (b) and sketch the family of solutions for some initial
conditions y(a) = b. What happens when a = 0 or b = 0? Compare this with the
existence-uniqueness theorem.

Solution.

(a) Let F (x, y) = 1+y2. Then both F (x, y) and ∂
∂yF (x, y) = 2y are defined and continuous

at all points (x, y), so by the theorem we can conclude that a solution exists in some
open interval centered at 0, and is unique in some (possibly smaller) interval centered
at 0.
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(b) In this example, F (x, y) = 2y/x and ∂
∂yF (x, y) = 2/x. Both of these functions are

defined for all x 6= 0 so the existence-uniqueness theorem tells us that for each a 6= 0
there exists a unique solution defined in a open interval around a. By separating
variables and integrating, we derive solutions to this equation of the form

y = Cx2

for any constant C. Notice that all of these solutions pass through the point (0, 0), and
that none of them pass through any point (0, b) with b 6= 0. So the initial value problem

y′ = 2y/x, y(0) = 0

has infinitely many solutions, but the initial value problem

y′ = 2y/x, y(0) = b, b 6= 0

has no solutions.
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