Solutions to Exercise Session, May 23, 2016

1. Calculate

$$
\iint_{\mathbb{R}^{2}} \frac{1}{\left(1+x^{2}+(y-x)^{2}\right)^{2}} d x d y
$$

Solution. By invariance under translations

$$
\iint_{\mathbb{R}^{2}} \frac{1}{\left(1+x^{2}+(y-x)^{2}\right)^{2}} d x d y=\iint_{\mathbb{R}^{2}} \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y
$$

Using polar coordinates $x=r \cos \theta, y=r \sin \theta$ we get

$$
\iint_{\mathbb{R}^{2}} \frac{1}{\left(1+x^{2}+(y-x)^{2}\right)^{2}} d x d y=2 \pi \int_{0}^{\infty} \frac{r}{\left(1+r^{2}\right)^{2}} d r=\pi \int_{0}^{\infty}-\frac{d}{d r} \frac{1}{1+r^{2}} d r=\pi .
$$

2. Calculate

$$
\iiint_{\mathbb{R}^{3}} e^{-x^{2}-2 y^{2}-3 z^{2}} d x d y d z .
$$

Solution.

$$
\begin{aligned}
\iiint_{\mathbb{R}^{3}} e^{-x^{2}-2 y^{2}-3 z^{2}} d x d y d z & =\int_{\mathbb{R}} e^{-x^{2}} d x \int_{\mathbb{R}} e^{-2 y^{2}} d y \int_{\mathbb{R}} e^{-3 z^{2}} d z \\
& =\frac{1}{\sqrt{2}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} d x \frac{1}{2} \int_{\mathbb{R}} e^{-\frac{y^{2}}{2}} d y \frac{1}{\sqrt{6}} \int_{\mathbb{R}} e^{-\frac{z^{2}}{2}} d z \\
& =\frac{(2 \pi)^{\frac{3}{2}}}{4 \sqrt{3}}=\frac{\pi^{\frac{3}{2}}}{\sqrt{6}}=\frac{\pi^{\frac{3}{2}} \sqrt{6}}{6} .
\end{aligned}
$$

3. Let

$$
E=\left\{(x, y, z) \in \mathbf{R}^{3}: x \in[0,1], y^{2}+z^{2} \leq x^{2}\right\}
$$

Describe E and give $|E|=\operatorname{Vol}(E)$.

Solution. The set E represents a cone around the axis x. The summit is $(0,0,0)$.

$$
|E|=\pi \int_{0}^{1} x^{2} d x=\frac{\pi}{3}
$$

4. For the differential equation:

$$
d y / d x=9 x^{2} y
$$

find the general solution.
(a) $y(x)=A e^{3 x^{3}}$
(b) $y(x)=A e^{3 x^{4}}$
(c) $y(x)=A e^{x^{2}}$
(d) $y(x)=A e^{x^{3}}$

Solution. The correct answer is (a). By separating the variables, the equation becomes:

$$
\frac{d y}{y}=9 x^{2} d x
$$

and after integrating both sides we get:

$$
\ln y=3 x^{3}+C
$$

and so $y=A e^{3 x^{3}}$.
5. Suppose that y_{0} satisfies:

$$
\left(x^{2}+9\right) d y / d x=x y, \quad y(0)=3
$$

Find the value of $y_{0}(9)$.
(a) $y_{0}(9)=4 \sqrt{10}$
(b) $y_{0}(9)=3 \sqrt{10}$
(c) $y_{0}(9)=40$
(d) $y_{0}(9)=3 \sqrt{17}$

Solution. The correct answer is (b). The general solution to the equation can be found by separation of variables:

$$
\frac{d y}{y}=\frac{d x}{x^{2}+9}
$$

and after integrating both sides we get $y_{0}=A\left(x^{2}+9\right)^{1 / 2}$. If we require $y_{0}(0)=3$ then $A=1$ and hence $y_{0}(9)=3 \sqrt{10}$.
6. Suppose that y_{0} satisfies:

$$
(x+3) d y / d x=y-1, \quad y(1)=2
$$

Find the value of $y_{0}(4)$.
(a) $y_{0}(4)=7 / 2$
(b) $y_{0}(4)=-1$
(c) $y_{0}(4)=3$
(d) $y_{0}(4)=11 / 4$

Solution. The correct answer is (d). The general solution to the equation can be found by separation of variables:

$$
\frac{d y}{y-1}=\frac{1}{x+3} d x
$$

and after integrating both sides we get $y_{0}=1+A(x+3)$. If we require $y_{0}(1)=2$ then $A=1 / 4$ and hence $y_{0}(4)=11 / 4$.
7. For the differential equation:

$$
d y / d x=\frac{e^{5 x}}{6 y^{5}}
$$

find the general solution.
(a) $y(x)= \pm \sqrt[5]{e^{5 x} / 5+C}$
(b) $y(x)= \pm \sqrt[5]{e^{5 x} / 5}+C$
(c) $y(x)= \pm \sqrt[6]{e^{5 x} / 5+C}$
(d) $y(x)= \pm \sqrt[6]{e^{5 x} / 5}+C$

Solution. The correct answer is (c). By separating the variables, the equation becomes:

$$
6 y^{5} d y=e^{5 x} d x
$$

and after integrating both sides we get:

$$
y^{6}=e^{5 x} / 5+C
$$

and so $y(x)= \pm \sqrt[6]{e^{5 x} / 5+C}$.
8. Find the general solution of the equation:

$$
2 y d y / d x=9 x
$$

(a) $y= \pm \sqrt{\frac{9}{2} x^{2}+C}$
(b) $y= \pm \sqrt{\frac{9}{2} x^{2}}+C$
(c) $y= \pm \sqrt{\frac{9}{2} x^{2}}$
(d) $y= \pm \sqrt{\frac{2}{9} x^{2}+C}$

Solution. The correct answer is (a). If we separate the variables we get:

$$
2 y d y=9 x d x
$$

which integrates to $2 y^{2}=9 x^{2}+C$ from which we get (a).
9. The solution $y(x)$ of the differential equation $\left(x^{2}+9\right) y^{\prime}+x y-x y^{2}=0$ for $x \in \mathbb{R}$ with the initial condition $y(0)=1 / 4$ also satisfies:
(a) $y(4)=1 / 6$
(b) $y(4)=-1 / 4$
(c) $y(4)=6$
(d) $y(4)=1$

Solution. The correct answer is (b). If we separate the variables we get:

$$
\frac{d y}{y^{2}-y}=\frac{x d x}{x^{2}+9}
$$

We have

$$
\int \frac{d y}{y^{2}-y}=\int \frac{1}{y-1}-\frac{1}{y} d y=\ln \left(\frac{y-1}{y}\right)+C_{1}, \quad \frac{y-1}{y}>0
$$

and

$$
\int \frac{x}{x^{2}+9} d x=\frac{1}{2} \ln \left(x^{2}+9\right)+C_{2}
$$

If we put everything together we get

$$
\ln \left(\frac{y-1}{y}\right)=\frac{1}{2} \ln \left(x^{2}+9\right)+C \Longrightarrow\left(\frac{y-1}{y}\right)^{2}=A\left(x^{2}+9\right)
$$

If we use the initial condition $y(0)=1 / 4$ we get that $A=1$ and finally for we can compute $y(4)$,

$$
\left(\frac{y-1}{y}\right)^{2}=25 \Longrightarrow y(4)=1 / 6 \text { or } y(4)=-1 / 4
$$

where $y=-1 / 4$ is the acceptable solution.
10. Find the general solution of the following equations
(a) $y^{\prime}-\frac{3 y}{x+1}=(x+1)^{4}$
(b) $\cos (x) y^{\prime}+\sin (x) y=2 \cos ^{3}(x) \sin (x)-1$

Solution.

(a) The differential equation is of the form $y^{\prime}+P(x) y=Q(x)$. We first find the integrating factor

$$
I=e^{\int P d x}=e^{\int \frac{-3}{x+1}} d x=e^{-3 \ln (x+1)}=e^{\ln (x+1)^{-3}}=\frac{1}{(x+1)^{3}}
$$

We multiply both sides of differential equation with I to get

$$
\frac{1}{(x+1)^{3}} y^{\prime}-\frac{3 y}{(x+1)^{4}}=(x+1)
$$

by integrating both sides we get

$$
\frac{y}{(x+1)^{3}}=\frac{1}{2} x^{2}+x+C
$$

So the general solution is

$$
y=(x+1)^{3}\left(\frac{1}{2} x^{2}+x+C\right)
$$

(b) We first write the differential equations in the form of $y^{\prime}+P(x) y=Q(x)$:

$$
y^{\prime}+\frac{\sin (x)}{\cos (x)} y=2 \cos ^{2}(x) \sin (s)-\frac{1}{\cos (x)}
$$

Now we find the integral factor

$$
I=e^{\int P(x) d x}=e^{\int \frac{\sin (x)}{\cos (x)}} d x=e^{-\ln |\cos (x)|}=\frac{1}{\cos (x)}
$$

Now we multiply both sides of the differential equation with I

$$
\frac{y^{\prime}}{\cos (x)}+\frac{\sin (x)}{\cos ^{2}(x)}=2 \sin (x) \cos (x)-\frac{1}{\cos ^{2}(x)}
$$

Taking the integral of both sides yields

$$
\frac{y}{\cos (x)}=-\frac{1}{2} \cos (x)-\tan (x)+C
$$

So the general solution is

$$
y=-\frac{1}{2} \cos (x) \cos (2 x)-\sin (x)+C \cos (x)
$$

11. For each of the following differential equations check if the solution exists and is unique.
(a) $y^{\prime}=1+y^{2}, y(0)=0$
(b) $y^{\prime}=\frac{2 y}{x}, y(a)=b$
solve the differential equation (b) and sketch the family of solutions for some initial conditions $y(a)=b$. What happens when $a=0$ or $b=0$? Compare this with the existence-uniqueness theorem.

Solution.

(a) Let $F(x, y)=1+y^{2}$. Then both $F(x, y)$ and $\frac{\partial}{\partial y} F(x, y)=2 y$ are defined and continuous at all points (x, y), so by the theorem we can conclude that a solution exists in some open interval centered at 0 , and is unique in some (possibly smaller) interval centered at 0 .
(b) In this example, $F(x, y)=2 y / x$ and $\frac{\partial}{\partial y} F(x, y)=2 / x$. Both of these functions are defined for all $x \neq 0$ so the existence-uniqueness theorem tells us that for each $a \neq 0$ there exists a unique solution defined in a open interval around a. By separating variables and integrating, we derive solutions to this equation of the form

$$
y=C x^{2}
$$

for any constant C. Notice that all of these solutions pass through the point $(0,0)$, and that none of them pass through any point $(0, b)$ with $b \neq 0$. So the initial value problem

$$
y^{\prime}=2 y / x, y(0)=0
$$

has infinitely many solutions, but the initial value problem

$$
y^{\prime}=2 y / x, y(0)=b, b \neq 0
$$

has no solutions.

