Exercise Session, May 23, 2016

1. Calculate

$$
\iint_{\mathbb{R}^{2}} \frac{1}{\left(1+x^{2}+(y-x)^{2}\right)^{2}} d x d y
$$

2. Calculate

$$
\iiint_{\mathbb{R}^{3}} e^{-x^{2}-2 y^{2}-3 z^{2}} d x d y d z
$$

3. Let

$$
E=\left\{(x, y, z) \in \mathbf{R}^{3}: x \in[0,1], y^{2}+z^{2} \leq x^{2}\right\}
$$

Describe E and give $|E|=\operatorname{Vol}(E)$.
4. For the differential equation:

$$
d y / d x=9 x^{2} y
$$

find the general solution.
(a) $y(x)=A e^{3 x^{3}}$
(b) $y(x)=A e^{3 x^{4}}$
(c) $y(x)=A e^{x^{2}}$
(d) $y(x)=A e^{x^{3}}$
5. Suppose that y_{0} satisfies:

$$
\left(x^{2}+9\right) d y / d x=x y, \quad y(0)=3 .
$$

Find the value of $y_{0}(9)$.
(a) $y_{0}(9)=4 \sqrt{10}$
(b) $y_{0}(9)=3 \sqrt{10}$
(c) $y_{0}(9)=40$
(d) $y_{0}(9)=3 \sqrt{17}$
6. Suppose that y_{0} satisfies:

$$
(x+3) d y / d x=y-1, \quad y(1)=2 .
$$

Find the value of $y_{0}(4)$.
(a) $y_{0}(4)=7 / 2$
(b) $y_{0}(4)=-1$
(c) $y_{0}(4)=3$
(d) $y_{0}(4)=11 / 4$
7. For the differential equation:

$$
d y / d x=\frac{e^{5 x}}{6 y^{5}}
$$

find the general solution.
(a) $y(x)= \pm \sqrt[5]{e^{5 x} / 5+C}$
(b) $y(x)= \pm \sqrt[5]{e^{5 x} / 5}+C$
(c) $y(x)= \pm \sqrt[6]{e^{5 x} / 5+C}$
(d) $y(x)= \pm \sqrt[6]{e^{5 x} / 5}+C$
8. Find the general solution of the equation:

$$
2 y d y / d x=9 x
$$

(a) $y= \pm \sqrt{\frac{9}{2} x^{2}+C}$
(b) $y= \pm \sqrt{\frac{9}{2} x^{2}}+C$
(c) $y= \pm \sqrt{\frac{9}{2} x^{2}}$
(d) $y= \pm \sqrt{\frac{2}{9} x^{2}+C}$
9. The solution $y(x)$ of the differential equation $\left(x^{2}+9\right) y^{\prime}+x y-x y^{2}=0$ for $x \in \mathbb{R}$ with the initial condition $y(0)=1 / 4$ also satisfies:
(a) $y(4)=1 / 6$
(b) $y(4)=-1 / 4$
(c) $y(4)=6$
(d) $y(4)=1$
10. Find the general solution of the following equations
(a) $y^{\prime}-\frac{3 y}{x+1}=(x+1)^{4}$
(b) $\cos (x) y^{\prime}+\sin (x) y=2 \cos ^{3}(x) \sin (x)-1$
11. For each of the following differential equations check if the solution exists and is unique.
(a) $y^{\prime}=1+y^{2}, y(0)=0$
(b) $y^{\prime}=\frac{2 y}{x}, y(a)=b$
solve the differential equation (b) and sketch the family of solutions for some initial conditions $y(a)=b$. What happens when $a=0$ or $b=0$? Compare this with the existence-uniqueness theorem.

