Analysis II Prof. Jan Hesthaven Spring Semester 2015–2016

Exercise Session, May 23, 2016

1. Calculate

$$\iint_{\mathbb{R}^2} \frac{1}{(1+x^2+(y-x)^2)^2} \, dx \, dy.$$

2. Calculate

$$\iiint_{\mathbb{R}^3} e^{-x^2 - 2y^2 - 3z^2} \, dx dy dz.$$

3. Let

$$E = \{(x, y, z) \in \mathbf{R}^3 : x \in [0, 1], y^2 + z^2 \le x^2\}$$

- Describe E and give $|E| = \operatorname{Vol}(E)$.
- 4. For the differential equation:

$$dy/dx = 9x^2y$$

find the general solution.

- (a) $y(x) = Ae^{3x^3}$
- (b) $y(x) = Ae^{3x^4}$
- (c) $y(x) = Ae^{x^2}$
- (d) $y(x) = Ae^{x^3}$
- 5. Suppose that y_0 satisfies:

$$(x^2 + 9)dy/dx = xy,$$
 $y(0) = 3.$

Find the value of $y_0(9)$.

- (a) $y_0(9) = 4\sqrt{10}$
- (b) $y_0(9) = 3\sqrt{10}$
- (c) $y_0(9) = 40$
- (d) $y_0(9) = 3\sqrt{17}$
- 6. Suppose that y_0 satisfies:

$$(x+3)dy/dx = y - 1,$$
 $y(1) = 2.$

Find the value of $y_0(4)$.

(a)
$$y_0(4) = 7/2$$

(b) $y_0(4) = -1$
(c) $y_0(4) = 3$

(d) $y_0(4) = 11/4$

7. For the differential equation:

$$dy/dx = \frac{e^{5x}}{6y^5}$$

find the general solution.

- (a) $y(x) = \pm \sqrt[5]{e^{5x}/5 + C}$
- (b) $y(x) = \pm \sqrt[5]{e^{5x}/5} + C$
- (c) $y(x) = \pm \sqrt[6]{e^{5x}/5 + C}$
- (d) $y(x) = \pm \sqrt[6]{e^{5x}/5} + C$
- 8. Find the general solution of the equation:

2ydy/dx = 9x.

- (a) $y = \pm \sqrt{\frac{9}{2}x^2 + C}$ (b) $y = \pm \sqrt{\frac{9}{2}x^2} + C$ (c) $y = \pm \sqrt{\frac{9}{2}x^2}$ (d) $y = \pm \sqrt{\frac{2}{9}x^2 + C}$
- 9. The solution y(x) of the differential equation $(x^2 + 9)y' + xy xy^2 = 0$ for $x \in \mathbb{R}$ with the initial condition y(0) = 1/4 also satisfies:
 - (a) y(4) = 1/6(b) y(4) = -1/4(c) y(4) = 6(d) y(4) = 1
- 10. Find the general solution of the following equations
 - (a) $y' \frac{3y}{x+1} = (x+1)^4$
 - (b) $\cos(x)y' + \sin(x)y = 2\cos^3(x)\sin(x) 1$
- 11. For each of the following differential equations check if the solution exists and is unique.

(a)
$$y' = 1 + y^2, y(0) = 0$$

(b) $y' = \frac{2y}{x}, y(a) = b$

solve the differential equation (b) and sketch the family of solutions for some initial conditions y(a) = b. What happens when a = 0 or b = 0? Compare this with the existence-uniqueness theorem.