Solutions to Exercise Session, May 2, 2016

1. Let $D=[0,1] \times[0, \pi / 2]$. Calculate

$$
\iint_{D} \frac{x \sin y}{1+x^{2}} d x d y
$$

Solution.

$$
\begin{aligned}
\iint_{D} \frac{x \sin y}{1+x^{2}} d x d y & =\int_{0}^{1} \frac{x}{1+x^{2}} d x \cdot \int_{0}^{\pi / 2} \sin y d y \\
& =\left.\left.\ln \left(1+x^{2}\right)\right|_{0} ^{1} \cdot(-\cos y)\right|_{0} ^{\pi / 2} \\
& =\frac{\ln 2}{2}
\end{aligned}
$$

2. Let $D=[0,1] \times[1,2]$. Calculate

$$
\iint_{D} \frac{x}{x^{2}+y^{2}} d x d y
$$

Solution.

$$
\int_{0}^{1} \frac{x}{x^{2}+y^{2}} d x=\int_{0}^{1} \frac{1}{2} \frac{d}{d x} \ln \left(x^{2}+y^{2}\right) d x=\frac{1}{2}\left(\ln \left(1+y^{2}\right)-\ln y^{2}\right)
$$

and

$$
\begin{gathered}
\frac{1}{2} \int_{1}^{2} \ln \left(1+y^{2}\right) d y=\left.\frac{y \ln \left(1+y^{2}\right)}{2}\right|_{y=1} ^{y=2}-\int_{1}^{2} \frac{y^{2}}{1+y^{2}} d y=\frac{y \ln \left(1+y^{2}\right)}{2}-y+\left.\arctan y\right|_{y=1} ^{y=2} \\
-\frac{1}{2} \int_{1}^{2} \ln \left(y^{2}\right) d y=y-\left.y \ln y\right|_{y=1} ^{y=2}
\end{gathered}
$$

where using $\arctan 1=\pi / 4$:

$$
\iint_{D} \frac{x}{x^{2}+y^{2}} d x d y=\arctan 2+\ln 5-\frac{5 \ln 2}{2}-\frac{\pi}{4}
$$

3. Let $D=[0, \pi] \times[0,1]$. Calculate

$$
\iint_{D} x \sin x y d x d y
$$

Solution.

$$
\begin{aligned}
\iint_{D} x \sin x y d x d y & =\int_{0}^{\pi}\left(\int_{0}^{1} x \sin x y d y\right) d x \\
& =\left.\int_{0}^{\pi}(-\cos x y)\right|_{y=0} ^{y=1} d x \\
& =\int_{0}^{\pi}(1-\cos x) d x \\
& =\left.(x-\sin x)\right|_{0} ^{\pi}=\pi
\end{aligned}
$$

4. Let D be the interior of the triangle of summits $A=(0,0), B=(\pi, 0)$ and $C=(\pi, \pi)$. Calculate

$$
\iint_{D} x \cos (x+y) d x d y
$$

Solution. Trivially $D=\{(x, y): 0 \leq y \leq x \leq \pi\}$. So

$$
\begin{aligned}
\iint_{D} x \cos (x+y) d x d y & =\int_{0}^{\pi}\left(\int_{0}^{x} x \cos (x+y) d y\right) d x \\
& =\left.\int_{0}^{\pi}(x \sin (x+y))\right|_{y=0} ^{y=x} d x \\
& =\int_{0}^{\pi} x \sin 2 x-x \sin x d x \\
& =\int_{0}^{\pi} \frac{x}{2}(-\cos 2 x)^{\prime}+x(\cos x)^{\prime} d x \\
& =-\frac{3 \pi}{2}+\int_{0}^{\pi} \frac{\cos 2 x}{2}-\cos x d x \\
& =-\frac{3 \pi}{2}
\end{aligned}
$$

5. Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. Calculate the volume of

$$
E=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in D \text { and } 0 \leq z \leq \sqrt{1-x^{2}-y^{2}}\right\}
$$

Deduce the volume of the unit ball $B_{1}(\mathbf{0})$ in \mathbb{R}^{3}.

Solution. Using the formula

$$
\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}, a>0,|x|<|a|
$$

with $a=\sqrt{1-y^{2}}$ we get

$$
\begin{aligned}
\operatorname{Vol}(E) & =\int_{-1}^{1}\left(\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \sqrt{1-y^{2}-x^{2}} d x\right) d y \\
& =\int_{-1}^{1} \frac{x}{2} \sqrt{1-y^{2}-x^{2}}+\left.\frac{1-y^{2}}{2} \arcsin \frac{x}{\sqrt{1-y^{2}}}\right|_{x=-\sqrt{1-y^{2}}} ^{x=\sqrt{1-y^{2}}} d y \\
& =\int_{-1}^{1} \frac{1-y^{2}}{2}(\arcsin 1-\arcsin (-1)) d y \\
& =\frac{\pi}{2} \int_{-1}^{1} 1-y^{2} d y \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

The set E represents the half unit ball. So

$$
\operatorname{Vol}\left(B_{1}(\mathbf{0})\right)=\frac{4 \pi}{3}
$$

6. Calculate

$$
\iint_{\mathbb{R}^{2}} e^{-|x-1|-|y|} d x d y
$$

Solution.

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} e^{-|x-1|-|y|} d x d y & =\int_{-\infty}^{\infty} e^{-|x-1|} d x \cdot \int_{-\infty}^{\infty} e^{-|y|} d y \\
& =\int_{-\infty}^{\infty} e^{-|t|} d t \cdot \int_{-\infty}^{\infty} e^{-|y|} d y \\
& =4 \int_{0}^{\infty} e^{-t} d t \cdot \int_{0}^{\infty} e^{-y} d y \\
& =4
\end{aligned}
$$

7. True/False

(a) False. Without loss of generality assume that $\left(x_{0}, y_{0}\right)=(0,0)$. Directional derivative of a function is given by $\left.\nabla f\right|_{(0,0)} \cdot \vec{v}$. Now consider,

$$
\vec{v}=\binom{1}{0}=\binom{\cos (0)}{\sin (0)}
$$

By assumption we have,

$$
\left.\nabla f\right|_{(0,0)} \cdot \vec{v}=1
$$

and

$$
\left.\nabla f\right|_{(0,0)} \cdot(-\vec{v})=\left.\nabla f\right|_{(0,0)} \cdot(\cos \pi, \sin \pi)=1 \neq-\left.\nabla f\right|_{(0,0)} \cdot \vec{v}
$$

Which is a contradiction. Note that if $\vec{v}=(\cos \theta, \sin \theta)$ then $\left.\nabla f\right|_{(0,0)} \cdot \vec{v}$ has to be a linear function of $\cos \theta$ and $\sin \theta$ and in this case it is not.
(b) True. The Hessian is positive-definite.
(c) True. Because $J_{\text {vow }}=\left.J_{v}\right|_{w} \times J_{W}$.
(d) False. It is possible for a function to have the global minimum on the boundary of D, but also a local minimum in the interior of D, where then the hessian matrix is definite.
(e) True. Since this vector is in direction of $-\nabla f$.
(f) Solution.
i. True. Let us recall that a function f is differentiable at x_{0} if there exists a linear functional L, which depends on x_{0}, such that $f\left(x_{0}+h\right)=f\left(x_{0}\right)+L h+\mathrm{o}(|h|)$ in a neighborhood of x_{0}. If such functional were to exist, then

$$
L v=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{|h|}
$$

where $v=h /|h|$ is a unit vector. Since f is a radial function, namely it depends upon $r=\sqrt{x^{2}+y^{2}}$ only, it is immediate to show that the previous limit exists and is equal to zero. Thus, f is differentiable at the origin and $L=0$.
ii. True. Since f is differentiable, then its differential can be expressed via the gradient.
iii. True. Indeed:

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin (1 /|h|)}{h}=0
$$

and analogously for the other partial derivative.
iv. False. Indeed, away from the origin:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x \sin \left(1 / \sqrt{x^{2}+y^{2}}\right)-\frac{x \cos \left(1 / \sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}} \\
& \frac{\partial f}{\partial y}=2 y \sin \left(1 / \sqrt{x^{2}+y^{2}}\right)-\frac{y \cos \left(1 / \sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

The limits of those functions, as we approach the origin, clearly do not exist.
Notice that f is an example of a function that, although being differentiable in a neighborhood of the origin, does not have continuous partial derivatives at the origin.

