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1. Let D = [0, 1]× [0, π/2]. Calculate ∫∫
D

x sin y

1 + x2
dxdy.

Solution. ∫∫
D

x sin y

1 + x2
dxdy =

∫ 1

0

x

1 + x2
dx ·

∫ π/2

0

sin y dy

= ln(1 + x2)

∣∣∣∣1
0

· (− cos y)

∣∣∣∣π/2
0

=
ln 2

2
.

2. Let D = [0, 1]× [1, 2]. Calculate ∫∫
D

x

x2 + y2
dxdy.

Solution. ∫ 1

0

x

x2 + y2
dx =

∫ 1

0

1

2

d

dx
ln(x2 + y2) dx =

1

2
(ln(1 + y2)− ln y2).

and

1

2

∫ 2

1

ln(1 + y2) dy =
y ln(1 + y2)

2

∣∣∣∣y=2

y=1

−
∫ 2

1

y2

1 + y2
dy =

y ln(1 + y2)

2
− y + arctan y

∣∣∣∣y=2

y=1

,

−1

2

∫ 2

1

ln(y2) dy = y − y ln y

∣∣∣∣y=2

y=1

where using arctan 1 = π/4:∫∫
D

x

x2 + y2
dxdy = arctan 2 + ln 5− 5 ln 2

2
− π

4

3. Let D = [0, π]× [0, 1]. Calculate ∫∫
D

x sinxy dxdy.



Solution. ∫∫
D

x sinxy dxdy =

∫ π

0

(∫ 1

0

x sinxy dy

)
dx

=

∫ π

0

(− cosxy)

∣∣∣∣y=1

y=0

dx

=

∫ π

0

(1− cosx) dx

= (x− sinx)

∣∣∣∣π
0

= π

4. Let D be the interior of the triangle of summits A = (0, 0), B = (π, 0) and C = (π, π).
Calculate ∫∫

D

x cos(x+ y) dxdy.

Solution. Trivially D = {(x, y) : 0 ≤ y ≤ x ≤ π}. So∫∫
D

x cos(x+ y) dxdy =

∫ π

0

(∫ x

0

x cos(x+ y) dy

)
dx

=

∫ π

0

(x sin(x+ y))

∣∣∣∣y=x
y=0

dx

=

∫ π

0

x sin 2x− x sinx dx

=

∫ π

0

x

2
(− cos 2x)′ + x(cosx)′ dx

= −3π

2
+

∫ π

0

cos 2x

2
− cosx dx

= −3π

2
.

5. Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Calculate the volume of

E = {(x, y, z) ∈ R3 : (x, y) ∈ D and 0 ≤ z ≤
√

1− x2 − y2}.

Deduce the volume of the unit ball B1(0) in R3.

Solution. Using the formula∫ √
a2 − x2 dx =

x

2

√
a2 − x2 +

a2

2
arcsin

x

a
, a > 0, |x| < |a|
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with a =
√

1− y2 we get

Vol(E) =

∫ 1

−1

(∫ √1−y2

−
√

1−y2

√
1− y2 − x2 dx

)
dy

=

∫ 1

−1

x

2

√
1− y2 − x2 +

1− y2

2
arcsin

x√
1− y2

∣∣∣∣x=
√

1−y2

x=−
√

1−y2
dy

=

∫ 1

−1

1− y2

2
(arcsin 1− arcsin(−1)) dy

=
π

2

∫ 1

−1
1− y2 dy

=
2π

3
.

The set E represents the half unit ball. So

Vol(B1(0)) =
4π

3
.

6. Calculate ∫∫
R2

e−|x−1|−|y| dxdy.

Solution. ∫∫
R2

e−|x−1|−|y| dxdy =

∫ ∞
−∞

e−|x−1| dx ·
∫ ∞
−∞

e−|y| dy

=

∫ ∞
−∞

e−|t| dt ·
∫ ∞
−∞

e−|y| dy

= 4

∫ ∞
0

e−t dt ·
∫ ∞
0

e−y dy

= 4.

7. True/False

(a) False. Without loss of generality assume that (x0, y0) = (0, 0). Directional derivative
of a function is given by ∇f |(0,0) · ~v. Now consider,

~v =

(
1
0

)
=

(
cos(0)
sin(0)

)
By assumption we have,

∇f |(0,0) · ~v = 1

and
∇f |(0,0) · (−~v) = ∇f |(0,0) · (cosπ, sinπ) = 1 6= −∇f |(0,0) · ~v

Which is a contradiction. Note that if ~v = (cos θ, sin θ) then ∇f |(0,0) · ~v has to be a
linear function of cos θ and sin θ and in this case it is not.

(b) True. The Hessian is positive-definite.

(c) True. Because Jvow = Jv|w × JW .

(d) False. It is possible for a function to have the global minimum on the boundary of D,
but also a local minimum in the interior of D, where then the hessian matrix is definite.
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(e) True. Since this vector is in direction of −∇f .

(f) Solution.

i. True. Let us recall that a function f is differentiable at x0 if there exists a linear
functional L, which depends on x0, such that f(x0 + h) = f(x0) +Lh+ o(|h|) in a
neighborhood of x0. If such functional were to exist, then

Lv = lim
h→0

f(x0 + h)− f(x0)

|h|

where v = h/|h| is a unit vector. Since f is a radial function, namely it depends

upon r =
√
x2 + y2 only, it is immediate to show that the previous limit exists and

is equal to zero. Thus, f is differentiable at the origin and L = 0.

ii. True. Since f is differentiable, then its differential can be expressed via the gra-
dient.

iii. True. Indeed:

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim
h→0

h2 sin(1/|h|)
h

= 0

and analogously for the other partial derivative.

iv. False. Indeed, away from the origin:

∂f

∂x
= 2x sin(1/

√
x2 + y2)− x cos(1/

√
x2 + y2)√

x2 + y2

∂f

∂y
= 2y sin(1/

√
x2 + y2)− y cos(1/

√
x2 + y2)√

x2 + y2

The limits of those functions, as we approach the origin, clearly do not exist.

Notice that f is an example of a function that, although being differentiable in a
neighborhood of the origin, does not have continuous partial derivatives at the origin.
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