Exercise Session, May 2, 2016

1. Let $D=[0,1] \times[0, \pi / 2]$. Calculate

$$
\iint_{D} \frac{x \sin y}{1+x^{2}} d x d y
$$

2. Let $D=[0,1] \times[1,2]$. Calculate

$$
\iint_{D} \frac{x}{x^{2}+y^{2}} d x d y
$$

3. Let $D=[0, \pi] \times[0,1]$. Calculate

$$
\iint_{D} x \sin x y d x d y
$$

4. Let D be the interior of the triangle of summits $A=(0,0), B=(\pi, 0)$ and $C=(\pi, \pi)$.

Calculate

$$
\iint_{D} x \cos (x+y) d x d y
$$

5. Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. Calculate the volume of

$$
E=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y) \in D \text { and } 0 \leq z \leq \sqrt{1-x^{2}-y^{2}}\right\}
$$

Deduce the volume of the unit ball $B_{1}(\mathbf{0})$ in \mathbb{R}^{3}.

Useful formulas.

$$
\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}, a>0,|x|<|a|,
$$

6. Calculate

$$
\iint_{\mathbb{R}^{2}} e^{-|x-1|-|y|} d x d y
$$

7. True/False

(a) There exists a function $f(x, y)$ which is differentiable at $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and its directional derivatives at each direction $\vec{v}=(\cos \theta, \sin \theta)$ for $0 \leq \theta<2 \pi$ equals $\cos ^{2} \theta+2 \sin \theta$.False
(b) Consider $f(x, y)=x^{2}-2 x y+\frac{4}{3} y^{2}-4 y$. The local minimum of f is a strict local minimum.
(c) Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous and differentiable at $a \in \mathbb{R}^{n}$. Also assume that $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable at $f(a)$. Then $\nabla(g \circ f)(a)=\nabla(g(f(a))) \times J_{f}(a)$. Note that here the gradient of a function is a row vector.TrueFalse
(d) Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and differentiable on a bounded closed set $D \subset \mathbb{R}^{n}$. Then f attains its global minimum on the boundary if and only if whenever $\nabla f\left(x_{0}\right)=0$ for some $x \in \mathbb{R}^{n}$ then $H_{f}\left(x_{0}\right)$ has both positive and negative eigenvalues.TrueFalse
(e) Let $f(x, y, z)=x+y^{2}+z^{3}$. Then at the point $(0,1,1)$ the function decrease fastest in the direction of $\left(\frac{-e}{\sqrt{2}}, \frac{-2 e}{\sqrt{2}}, \frac{-3 e}{\sqrt{2}}\right)$.TrueFalse
(f) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the piecewise function defined as:

$$
f= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(1 / \sqrt{x^{2}+y^{2}}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

Then:
i. Function f is differentiable at the origin.
ii. At the origin, the differential of f is equal to $\nabla f(0,0) \cdot(x, y)$.
iii. The partial derivatives of f vanish at the origin.TrueFalse
iv. The partial derivatives of f are continuous at the origin.TrueFalseTrueFalse

