[1.](ii) TF $. \nabla f=(-2,3,6)^{T} \neq \overline{0}$. So the extrema lie on the boundary. We have to maximize :

$$
\left\{\begin{array}{l}
-2 x+3 y+6 z+42 \\
\text { Subject to } \quad x^{2}+\frac{3 y^{2}}{2}+3 z^{2}+2 x-6 z=\frac{3}{2}
\end{array}\right.
$$

$\nabla g=\left(\begin{array}{c}2 x+2 \\ 3 y \\ 6 z-6\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Longleftrightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$
But $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ is not in $M=\left\{\bar{x}: a(\bar{x})=\frac{3}{2}\right\}$. So the extrema satisfy :
$\nabla f+\lambda \nabla g=\overline{0}=\left(\begin{array}{c}-2 \\ 3 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}2 x+2 \\ 3 y \\ 6 z-6\end{array}\right)$
$\Rightarrow \lambda=\frac{1}{x+1}=-\frac{1}{y}=-\frac{1}{z-1} \Rightarrow\left\{\begin{array}{l}x=\frac{1}{\lambda}-1 \\ y=-\frac{1}{\lambda} \\ z=-\frac{1}{\lambda}+1\end{array}\right.$
$g(x, y, z)=\frac{1}{\lambda^{2}}-\frac{1}{\lambda}+1+\frac{3}{2 \lambda^{2}}+3\left(\frac{1}{\lambda^{2}}-\frac{2}{\lambda}+1\right)+\frac{2}{\lambda}-2+\frac{6}{\lambda}-6=\frac{\sqrt{5}}{\lambda^{2}}-4=\frac{3}{2} \Rightarrow \lambda= \pm 1$
The extrema are : $\left\{\begin{array}{l}\lambda=1 \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right) \Rightarrow f=39 \text { Minimum } \\ \lambda=-1 \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right) \Rightarrow f=61 \text { Maximum }\end{array}\right.$
[2.](iv) $\nabla f=\left(y e^{(x-1) y},(x-1) e^{(x-1) y}\right)^{T}=\overline{0}$ only if $y=0, x=1$ so the extrema are on ∂E. Using the parametrization $x=\cos (\theta), y=\sin (\theta)$ we reduce the problem to maximizing/minimizing $\quad(\cos (\theta)-1) \sin (\theta)=g(\theta)$.

$$
\begin{aligned}
& g^{\prime}(\theta)=-\sin ^{2}(\theta)+\cos ^{2}(\theta)-\cos (\theta)=2 \cos ^{2}(\theta)-\cos (\theta)-1=(2 \cos (\theta)+1)(\cos (\theta)-1) \\
& \cos (\theta)=1 \Rightarrow e^{(x-1) y}=e^{0}=1 \\
& \cos (\theta)=-\frac{1}{2} \Rightarrow x=-\frac{1}{2}, y= \pm \frac{\sqrt{3}}{2} \\
& \left\{\begin{array}{l}
f\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)=e^{\frac{3 \sqrt{3}}{4}}>1 \\
f\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=e^{-\frac{3 \sqrt{3}}{4}}<1 \Rightarrow(\text { iv }) .
\end{array}\right.
\end{aligned}
$$

[3.] (iv) $\left.\nabla f=\left(\frac{x}{2}-y, \frac{y}{2}-x\right)^{T}\right)=\overline{0}$ only if $(x, y)=(0,0)$. Here, $f=0$ on the boundary. Let's apply the change $(x, y)=(\cos (\theta), \sin (\theta))$:
$f(x, y)=\frac{1}{4}-\cos (\theta) \sin (\theta)=g(\theta)$
$g^{\prime}(\theta)=\sin ^{2}(\theta)-\cos ^{2}(\theta)=0$ for $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
For $\theta=\frac{\pi}{4}, \frac{5 \pi}{4}, \quad \cos (\theta) \sin (\theta)=\frac{1}{2} \Rightarrow f=-\frac{1}{4} \Rightarrow$ Minimum.
For $\theta=\frac{3 \pi}{4}, \frac{7 \pi}{4}, \quad \cos (\theta) \sin (\theta)=-\frac{1}{2} \Rightarrow f=\frac{1}{4} \Rightarrow$ Maximum.
[4.](i) $g(x, y)=e^{x^{2}}+e^{y^{2}}-4 \Rightarrow \nabla g(x, y)=\left(2 x e^{x^{2}}, 2 y e^{y^{2}}\right)=\overline{0}$ only if $(x, y)=$ $(0,0)$ where the constraint is not satisfied. The Lagrange approach is then justified :
$\nabla f+\lambda \nabla g=\binom{-x e^{-x^{2}}}{y e^{-y^{2}}}+\lambda\binom{2 x e^{x^{2}}}{2 y e^{y^{2}}}=\overline{0}$
$\left\{\begin{array}{l}\lambda=-\frac{1}{2} e^{-2 x^{2}} \text { or } x=0 \\ \lambda=-\frac{1}{2} e^{-2 y^{2}} \text { or } y=0\end{array} \Rightarrow\right.$ Only 2 cases which are : $\left\{\begin{array}{l}x=0 \text { and } \lambda=-\frac{1}{2} e^{-2 y^{2}} \\ y=0 \text { and } \lambda=-\frac{1}{2} e^{-2 x^{2}}\end{array}\right.$
$\underline{x=0}: e^{y^{2}}=4-1=3 \Rightarrow y= \pm \sqrt{(\log (3)}$
$y=0: e^{x^{2}}=4-1=3 \Rightarrow x= \pm \sqrt{(\log (3)}$
If $x=0, \quad f(0, \pm \sqrt{(\log (3)})= \pm \frac{1}{2}\left(1-e^{-\log (3)}\right)=\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3}$
If $x=0, \quad f(\pm \sqrt{(\log (3)}, 0)=-\frac{1}{2}\left(1-e^{\log (3)}\right)=-\frac{1}{3}$
[5.](iii) Let $g_{1}(x, y, z)=x^{2}+y^{2}+2 z^{2}-4$ and $g_{2}(x, y, z)=x y z-1$.
We want to find the extrema of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to $g_{1}=g_{2}=0$
Remark : If (x, y, z) is an extremum, then so are $(-x,-y, z),(x,-y,-z),(-x, y,-z)$ because f, g_{1}, g_{2} remain unchanged. So then for an extremum, we can suppose that x and y are positive which implies that z is positive as well (because $x y z=1>0$). We are now looking for positive x, y and z :
First list: $\nabla g_{1}=\left(\begin{array}{l}2 x \\ 2 y \\ 4 z\end{array}\right), \nabla g_{2}=\left(\begin{array}{c}y z \\ x z \\ x y\end{array}\right)$
If ∇g_{1} and ∇g_{2} are linearly independant (as it is impossible that either one of them is equal to 0), we have :

$$
\left(\begin{array}{l}
2 x \\
2 y \\
4 z
\end{array}\right)=c\left(\begin{array}{l}
y z \\
x z \\
x y
\end{array}\right) \Rightarrow x=\frac{2 x}{y z}=\frac{2 y}{x z} \Rightarrow \frac{x}{y}=\frac{y}{x} \Rightarrow x^{2}=y^{2}
$$

$\Rightarrow x=y$ because $x, y>0$
$4 z=c x y=c x^{2}=\frac{2}{z} x^{2} \Rightarrow 2 z^{2}=x^{2}$
$g_{2}=0 \Rightarrow x^{2}+y^{2}+2 z^{2}=3 x^{2}=4 \Rightarrow x=y=\frac{2}{\sqrt{3}}$ and $z=\frac{\sqrt{2}}{\sqrt{3}} \Rightarrow x y z=\frac{4 \sqrt{2}}{3 \sqrt{3}} \neq 1$.
So $\nexists(x, y, z)$ such that $g_{1}(\bar{x})=0$ and $g_{2}(\bar{x})=0$ and at the same time, ∇g_{1} and ∇g_{2} are linearly dependant, whch means that the first list is empty.

Second list: We're looking for $x, y, z>0$ with $\nabla f=\left(\begin{array}{l}2 x \\ 2 y \\ 2 z\end{array}\right)=\lambda\left(\begin{array}{l}2 x \\ 2 y \\ 4 z\end{array}\right)+\sigma\left(\begin{array}{l}y z \\ x z \\ x y\end{array}\right)$
Then $\left\{\begin{array}{l}2 x-2 \lambda x=\sigma z y \\ 2 y-2 \lambda y=\sigma x z\end{array} \Rightarrow\left\{\begin{array}{l}\sigma x y z=(2 x-2 \lambda x) x=(2-2 \lambda) x^{2} \\ \sigma x y z=(2 y-2 \lambda y) y=(2-2 \lambda) y^{2}\end{array}\right.\right.$
We notice that $\lambda=1$ is impossible because it would imply that $\sigma=0$ and hence that $z=0$ which violates the condition $g_{2}=0$. Which means that $x^{2}=y^{2} \Rightarrow x=y$ as they are both positive.
So $x^{2}+y^{2}+2 z^{2}-4=0 \Longleftrightarrow 2 x^{2}+2 z^{2}-4=0 \Longleftrightarrow \frac{2}{z}+2 z^{2}-4=0 \Longleftrightarrow z^{3}-2 z+1=$ $0 \Longleftrightarrow(z-1)\left(z^{2}+z-1\right)=0 \Rightarrow z=1$ or $z=\frac{-1 \pm \sqrt{5}}{2}$
We know that z is positive so 2 choices :
$z=1, x=y=z=1$ or
$z=\frac{-1+\sqrt{5}}{2} \Rightarrow x^{2}=y^{2}=\frac{1}{\frac{\sqrt{5}-1}{2}}=\frac{\sqrt{5}+1}{2}$
$\Rightarrow x^{2}+y^{2}+z^{2}=3$ in the first case and $x^{2}+y^{2}+z^{2}=\sqrt{5}+1+\left(\frac{-1+\sqrt{5}}{2}\right)^{2}=\frac{5+\sqrt{5}}{2}>$ 3 in the second case.
So the first case is a minimum and the second case is a maximum.
[6.](iv) We have to maximize $f=\prod_{k=1}^{n} x_{k}^{2}$ subject to $g=\sum_{k=1}^{n} x_{k}^{2}=1$.
$\nabla g=2 \bar{x}=\overline{0} \Longleftrightarrow \bar{x}=0$ which is not the maximum and doesn't satisfy the condition because $g(\overline{0})=0 \neq 1$. Then we can use the Lagrange approach :We are looking for \bar{x}, λ such that:
$\nabla f+\lambda \nabla g=\overline{0}$ which means $\forall k, \quad 2 x_{n} \prod_{j \neq k} x_{j}^{2}+\lambda 2 x_{n}=\overline{0}$. As we can't have $x_{n}=0$ for the maximum, these equations imply :
$\lambda=-\frac{1}{\prod_{j \neq k} x_{j}^{2}}=-\frac{x_{n}^{2}}{f(\bar{x})}$, which means that $x_{k}^{2}=x_{j}^{2} \quad \forall j, k$ hence $\forall n, x_{n}^{2}=\frac{1}{n}$
[7.] (iii) We can see that $\forall x, y, z$ on the ellipsoid $|x|,|y|,|z| \leq 10^{5}$ so $|x+y+z| \leq$ $3 \times 10^{5}<c 10^{8}$ so the hyperplane doesn't intersect the ellipsoid and generally there is only one minimum. The distance of a point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) on the hyperplane to the ellipsoid is given by : $\left|\frac{x+y+z}{\sqrt{3}}-10^{8}\right|$. As we have that $x+y+z \leq 3.10^{5}<c 10^{8}$, we have to minimize $10^{8}-\frac{x+y+z}{\sqrt{3}}$ which is just about maximizing $f(x, y, z):=x+y+z$ subject to $g(x, y, z):=x^{2}+y^{2}+\frac{10}{9} z^{2}=10^{10}$
$\nabla g=\left(\begin{array}{c}2 x \\ 2 y \\ \frac{20}{9} z\end{array}\right)=\overline{0} \Longleftrightarrow\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\overline{0}$ Which is impossible on the ellipsoid. Hence, the Lagrange approach works.
$\nabla f+\lambda \nabla g=\overline{0}=\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}2 x \\ 2 y \\ \frac{20}{9} z\end{array}\right) \Longleftrightarrow \lambda=-\frac{1}{2 x}=-\frac{1}{2 y}=-\frac{9}{20 z} \Longleftrightarrow x=y=\frac{10}{9} z$
And $x^{2}+y^{2}+\frac{10}{9} z^{2}=2 x^{2}+\frac{10}{9} x^{2}=10^{10} \Rightarrow x=10^{5} \sqrt{\frac{10}{29}}=y, z=9.10^{4} \sqrt{\frac{10}{29}}$
Which means $x+y+z=10^{5} \sqrt{\frac{10}{29}}\left(1+1+\frac{9}{10}\right)=10^{4} \sqrt{290}$.

The distance is : $\frac{10^{8}-10^{4} \sqrt{290}}{\sqrt{3}}=\frac{10^{4}\left(10^{4}-\sqrt{290}\right)}{\sqrt{3}}$
[8.](i) We will rather look for the minimum of $f^{2}(x, y)=x^{2}+3 y^{2}$ subject to $x+y=3$.
 will then consider the second list.
$\nabla\left(f^{2}\right)+\lambda \nabla g=\overline{0} \Longleftrightarrow\binom{2 x}{6 y}+\lambda\binom{1}{1}=\overline{0} \Longleftrightarrow\left\{\begin{array}{l}2 x+\lambda=0 \\ 6 y+\lambda=0\end{array} \Rightarrow x=3 y\right.$ $x+y=4 y=3 \Rightarrow y=\frac{3}{4}, x=\frac{9}{4}$
$f(x, y)=\sqrt{x^{2}+3 y^{2}}=\frac{1}{4} \sqrt{81+27}=\frac{3}{4} \sqrt{12}=\frac{3 \sqrt{3}}{2}$
Remark: When $x, y \rightarrow \infty, f \rightarrow \infty$ so as f is continuous, the minimum exists and without calculation we can already rule out (iv). We can also consider $x=3$ (and $y=0$) to see that the minimum is ≤ 3 so (ii) isn't possible .
[9.](ii) Just like [8.], the list 1 is empty and we look for x, y, λ with $\binom{3 y}{3 x}+\lambda\binom{1}{1}=\overline{0}$ $\Rightarrow x=y=4$. And the maximum (it's obviously a maximum) is equal to 48 .
[10.](iv) We have to maximize $x y$ subject to $g(x, y):=\frac{x^{2}}{36}+\frac{y^{2}}{9}-1=0$ $\nabla g=\left(\frac{x}{18}, \frac{2 y}{9}\right)^{T}=\overline{0} \Longleftrightarrow(x, y)=(0,0)$
This violates the condition $g(x, y)=0$ so the list 1 is empty. We then look for x, y, λ such that $\binom{y}{x}+\lambda\binom{\frac{x}{18}}{\frac{2 y}{9}}=\overline{0} \Longleftrightarrow \lambda=\frac{18 y}{x}=\frac{9 x}{2 y} \Rightarrow 2 y=x$
And $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 \Rightarrow y=\frac{3}{\sqrt{2}}, x=3 \sqrt{2}$ and $x y=9$

