Analyse II - Prof. Mountford

Series 11:

Multiple Integrals
8 May 2017

Exercice 1:

Calculate the multiple integrals $\iint_{D} f(x, y) d y d x$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ et $D \subset \mathbb{R}^{2}$ is given by :
a) $f(x, y)=x^{3}+3 x^{2} y+y^{3}$ and $D=[0,2] \times[0,1]$.
b) $f(x, y)=\frac{x}{x^{2}+y^{2}}$ and $D=[1,2] \times[1,2]$.
c) $f(x, y)=x \cos (x+y)$ et D is the triangle with vertices $(0,0),(\pi, 0),(0, \pi)$.

For each integral check that, if one permutes the order of integration, one obtains the same result.

Exercice 2:

For each integral:
(1) $\int_{0}^{1} \int_{\sqrt{x}}^{x^{1 / 3}} f(x, y) d y d x$
(2) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} f(x, y) d y d x$
a) Draw the domain of integration.
b) Express the domain as a domain in terms of y and reverse the order of integration .

Exercice 3:

Calculate the integrals $\iint_{D} f(x, y) d y d x$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ et $D \subset \mathbb{R}^{2}$ are given by :
a) $f(x, y)=y^{3}$ and D is thetriangle defined by points $(0,2),(1,1),(3,2)$.
b) $f(x, y)=x \cos (y)$ and D is the region bounded by $y=0, y=x^{2}$ and $x=1$.

Exercice 4:

Let D be the tetrahedron enclosed by the planes $x=0, y=0, z=0$ and $4 x+2 y+z=8$.
a) Express this domain in terms of variable x.
b) Calculate the integral:

$$
\iiint_{D}(z+x-y) d x d y d z
$$

