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Analysis I Course Review Solutions

1. (a) x→ 0lim sin x

ln
(

1
1+x

) = x→ 0lim sin x
− ln(1+x) = x→ 0lim cos x

− 1
1+x

= −1

(b) For α > 0 using l’Hospital rule

lim
x→0+

xα lnx = lim
x→0+

lnx
1
xα

= lim
x→0+

1
x

−αxα−1

x2α

= lim
x→0+

− 1

α
xα = 0

(c) By a (long and) direct calculation using l’Hospital’s rule x→ 1lim
arctan

(
1−x
1+x

)
x−1 =

x→ 1lim
− 1

1+x2

1 = − 1
2 . Alternatively, we write y = 1−x

1+x , so x − 1 = −2y
1+y and x→

1lim
arctan

(
1−x
1+x

)
x−1 = y → 0lim−(y+1) arctan y

2y = y → 0lim
− arctan y− y+1

1+y2

2 = − 1
2

(d) One has truncated Taylor expansions sinhx = x+O(x3) and ln(1 + y) = y +O(y2) so

x→ 0lim ln(1+x2)
sinh2 x

= 1

(e) x→ 1lim
cos(πx2 ) sin(x−1)

ln((x−1)2) = 0

(f) x→ 0+lim
cos x−cos 1

x

ex−e
1
x

= 0 since e
1
x goes to infinity and the other terms are bounded.

2. (a) f(x) = xe−x
2

is of class C∞ with f’(x) =(1-2x2)e−x
2

f ′′(x) = −2x(3 − 2x2)e−x
2

.

Stationary points: x1 = −
√
2
2 (strict local minimum, f(x1) = −

√
2
2 e
− 1

2 ) and x2 =

−
√
2
2 (strict local maximum, f(x2) =

√
2
2 e
− 1

2 ). These are in fact global extrema since

limx→±∞ f(x) = 0. Inflexion points: x = 0 x = ±
√
6
2 .

(b) On the boundary f(−1) = f(3) = 0 and limx→±∞ f(x) = ∞. More precisely, one
observes that limn→−∞ f(x)− (1− x) = 0 limn→∞ f(x)− (x− 1) = 0 so that there
are asymptotes y = 1 − x when x → −∞ and y = x − 1 when x → +∞. f is of class
C∞ on the open set ]−∞,−1[∪]3,∞[ with f’(x) =x-1√

(x+1)(x−3)f ′′(x)= −4

(
√

(x+1)(x−3))3
.

f is strictly monotonic and strictly concave on its domain.

3. (a) We note that f(x) = exp(x lnx − x) and so f ′(x) = (lnx)f(x). Hence x = 1 is the
unique stationary point of the function f as f(x) > 0 and lnx is strictly increasing.

(b) f has a strict local minimum at x = 1 since f ′(x) < 0 if x < 1 and f ′(x) >
0 if x > 1. The truncated Taylor expansion of order 4 at this point is given by
f(x)=e−1

(
1 + 12(x− 1)2 − 16(x− 1)3 + 524(x− 1)4

)
.

(c) Note that we can rewrite ab as eb ln a using this trick we can write f(x) as

f(x) = ex ln x−x

Since g(x) = ex is a continuous function, we have

lim
x→0+

ex ln x−x = elimx→0+ x ln x−x

We saw in exercise 1.b that limx→0+ x lnx = 0 so

lim
x→0+

f(x) = e0 = 1

By l’Hospital’s rule (one may verify the required conditions are satisfied) we get x→
0+lim f(x)−1

x ln x = x→ 0+lim f ′(x)
1+ln x = x→ 0+lim (ln x)f(x)

1+ln x =
(
x→ 0+lim ln x

1+ln x

)
(x→ 0+limf(x))

=
(
x→ 0+lim

1
x
1
x

)
(x→ 0+limf(x)) = 1.

1



4. (a) By the change of variable s =
√
t, i.e., t = s2,

∫ +∞
0

e−
√
tdt =

∫ +∞
0

2se−sds = 2Γ(2) = 2

(b)
∫ +∞
1

ln t
t3 dt = 1

2

∫ +∞
1

ln t(−t−2)′ dt = 1
2

∫ +∞
1

1
t3 dt = 1

4(c)
∫ +∞
0

arctan t
1+t2 dt = arctan2 t

2

∣∣∣∣∞
0

= π2

8

5. (a) The integral converges if α < 1 and diverges otherwise.

(b) The integral converges if α > 1 and diverges otherwise.

6. (a) True. This is the statement of l’Hospital’s rule.

(b) False. Take, for example, f(x) = x + sinx and g(x) = x. We have f ′(x)
g′(x) = 1 + cosx

which has no limit at infinity. However, x→ +∞lim f(x)
g(x) = x→ +∞lim1 + sin x

x = 1.

(c) False. Take the counterexample for the preceding question.

(d) True. f and g are differentiable on [x, y], so by the mean value theorem, there exists

c ∈]x, y[ such that f ′(c)
g′(c) = f(y)−f(x)

g(y)−g(x) = 1.

(e) True. Since g is differentiable on R, the function sin g(x) is differentiable on R. If
g(a) = 0, then sin g(a) = 0 and we may apply l’Hospital’s rule which guarantees the

existence of the limit. If g(a) 6= 0, then by continuity, the limit is simply sin g(a)
g(a) .

(f) False. Take, for example, g(x) = x and a = 1. We have g(a) = 1 6= 0 (note that in this
case l’Hospital’s rule does not apply). By continuity, the limit is sinh 1

1 6= cosh 1.

7. (a) False. Since 7 is odd, f admits an inflexion point at a.

(b) True. Let f(x) = a0 + a1x+ · · ·+ anx
n + o(xn) be the Taylor expansion of f to order

n at 0. We then have f(−x) = a0 − a1x + · · · + (−1)nanx
n + o(xn). Since f is odd

and the Taylor expansion is unique, we conclude that a2m = 0 for all 0 ≤ 2m ≤ n. As

ak = f(k)(0)
k! , we obtain the result.

(c) True. This was shown in class.

2


