Analysis II

Prof. Jan Hesthaven Spring Semester 2015 Analysis I Course Review Solutions Posted February 19, 2016

- 1. (a) $x \to 0 \lim \frac{\sin x}{\ln \left(\frac{1}{1+x}\right)} = x \to 0 \lim \frac{\sin x}{-\ln(1+x)} = x \to 0 \lim \frac{\cos x}{-\frac{1}{1+x}} = -1$
 - (b) For $\alpha > 0$ using l'Hospital rule

$$\lim_{x \to 0^+} x^{\alpha} \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x^{\alpha}}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{-\alpha x^{\alpha - 1}}{x^{2\alpha}}} = \lim_{x \to 0^+} -\frac{1}{\alpha} x^{\alpha} = 0$$

- (c) By a (long and) direct calculation using l'Hospital's rule $x \to 1 \lim_{x \to 1} \frac{\arctan\left(\frac{1-x}{1+x}\right)}{x-1} =$ $x \to 1 \lim \frac{-\frac{1}{1+x^2}}{1} = -\frac{1}{2}. \text{ Alternatively, we write } y = \frac{1-x}{1+x}, \text{ so } x - 1 = \frac{-2y}{1+y} \text{ and } x \to 1 \lim \frac{\arctan\left(\frac{1-x}{1+x}\right)}{x-1} = y \to 0 \lim \frac{-(y+1)\arctan y}{2y} = y \to 0 \lim \frac{-\arctan y - \frac{y+1}{1+y^2}}{2} = -\frac{1}{2}$ (d) One has truncated Taylor expansions $\sinh x = x + O(x^3)$ and $\ln(1+y) = y + O(y^2)$ so
- $x \rightarrow 0 \lim \frac{\ln(1+x^2)}{\sinh^2 x} = 1$
- (e) $x \to 1 \lim_{x \to 1} \frac{x}{2 \sin(x-1)} = 0$
- (f) $x \to 0 + \lim \frac{\cos x \cos \frac{1}{x}}{\cos x \cos \frac{1}{x}} = 0$ since $e^{\frac{1}{x}}$ goes to infinity and the other terms are bounded.
- 2. (a) $f(x) = xe^{-x^2}$ is of class C^{∞} with $f'(x) = (1-2x^2)e^{-x^2}f''(x) = -2x(3-2x^2)e^{-x^2}$. Stationary points: $x_1 = -\frac{\sqrt{2}}{2}$ (strict local minimum, $f(x_1) = -\frac{\sqrt{2}}{2}e^{-\frac{1}{2}}$) and $x_2 = -\frac{\sqrt{2}}{2}e^{-\frac{1}{2}}$ $-\frac{\sqrt{2}}{2}$ (strict local maximum, $f(x_2) = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}$). These are in fact global extrema since $\lim_{x\to\pm\infty} f(x) = 0$. Inflexion points: x=0 $x=\pm\frac{\sqrt{6}}{2}$.
 - (b) On the boundary f(-1) = f(3) = 0 and $\lim_{x \to \pm \infty} f(x) = \infty$. More precisely, one observes that $\lim_{n\to-\infty} f(x) - (1-x) = 0$ $\lim_{n\to\infty} f(x) - (x-1) = 0$ so that there are asymptotes y = 1 - x when $x \to -\infty$ and y = x - 1 when $x \to +\infty$. f is of class The asymptotes g = 1 and g = 1 are asymptotes g = 1 are asymptotes g = 1 and f is strictly monotonic and strictly concave on its domain.
- 3. (a) We note that $f(x) = \exp(x \ln x x)$ and so $f'(x) = (\ln x) f(x)$. Hence x = 1 is the unique stationary point of the function f as f(x) > 0 and $\ln x$ is strictly increasing.
 - (b) f has a strict local minimum at x = 1 since f'(x) < 0 if x < 1 and f'(x) > 10 if x > 1. The truncated Taylor expansion of order 4 at this point is given by $f(x)=e^{-1}(1+12(x-1)^2-16(x-1)^3+524(x-1)^4)$.
 - (c) Note that we can rewrite a^b as $e^{b \ln a}$ using this trick we can write f(x) as

$$f(x) = e^{x \ln x - x}$$

Since $g(x) = e^x$ is a continuous function, we have

$$\lim_{x \to 0^+} e^{x \ln x - x} = e^{\lim_{x \to 0^+} x \ln x - x}$$

We saw in exercise 1.b that $\lim_{x\to 0^+} x \ln x = 0$ so

$$\lim_{x \to 0^+} f(x) = e^0 = 1$$

By l'Hospital's rule (one may verify the required conditions are satisfied) we get $x \rightarrow$ $0_{+}\lim \frac{f(x)-1}{x \ln x} = x \to 0_{+}\lim \frac{f'(x)}{1+\ln x} = x \to 0_{+}\lim \frac{(\ln x)f(x)}{1+\ln x} = \left(x \to 0_{+}\lim \frac{\ln x}{1+\ln x}\right)\left(x \to 0_{+}\lim f(x)\right)$ $= (x \to 0_+ \lim_{\frac{1}{2}}) (x \to 0_+ \lim_{f(x)} f(x)) = 1.$

4. (a) By the change of variable $s=\sqrt{t}$, i.e., $t=s^2$, $\int_0^{+\infty}e^{-\sqrt{t}}dt=\int_0^{+\infty}2se^{-s}ds=2\Gamma(2)=2$

- 5. (a) The integral converges if $\alpha < 1$ and diverges otherwise.
 - (b) The integral converges if $\alpha > 1$ and diverges otherwise.
- 6. (a) True. This is the statement of l'Hospital's rule.
 - (b) False. Take, for example, $f(x) = x + \sin x$ and g(x) = x. We have $\frac{f'(x)}{g'(x)} = 1 + \cos x$ which has no limit at infinity. However, $x \to +\infty \lim_{x \to a} \frac{f(x)}{g(x)} = x \to +\infty \lim_{x \to a} 1 + \frac{\sin x}{x} = 1$.
 - (c) False. Take the counterexample for the preceding question.
 - (d) True. f and g are differentiable on [x,y], so by the mean value theorem, there exists $c \in]x,y[$ such that $\frac{f'(c)}{g'(c)} = \frac{f(y)-f(x)}{g(y)-g(x)} = 1$.
 - (e) True. Since g is differentiable on R, the function $\sin g(x)$ is differentiable on R. If g(a)=0, then $\sin g(a)=0$ and we may apply l'Hospital's rule which guarantees the existence of the limit. If $g(a)\neq 0$, then by continuity, the limit is simply $\frac{\sin g(a)}{g(a)}$.
 - (f) False. Take, for example, g(x)=x and a=1. We have $g(a)=1\neq 0$ (note that in this case l'Hospital's rule does not apply). By continuity, the limit is $\frac{\sinh 1}{1}\neq \cosh 1$.
- 7. (a) False. Since 7 is odd, f admits an inflexion point at a.
 - (b) True. Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n + o(x^n)$ be the Taylor expansion of f to order n at 0. We then have $f(-x) = a_0 a_1 x + \cdots + (-1)^n a_n x^n + o(x^n)$. Since f is odd and the Taylor expansion is unique, we conclude that $a_{2m} = 0$ for all $0 \le 2m \le n$. As $a_k = \frac{f^{(k)}(0)}{k!}$, we obtain the result.
 - (c) True. This was shown in class.