Analysis II

Prof. Jan Hesthaven
Prof. Jan Hesthaven
Spring Semester 2015Analysis I Course Review Solutions
Posted February 19, 2016

1. (a) $\mathrm{x} \rightarrow 0 \lim \frac{\sin x}{\ln \left(\frac{1}{1+x}\right)}=x \rightarrow 0 \lim \frac{\sin x}{-\ln (1+x)}=x \rightarrow 0 \lim \frac{\cos x}{-\frac{1}{1+x}}=-1$
(b) For $\alpha>0$ using l'Hospital rule

$$
\lim _{x \rightarrow 0^{+}} x^{\alpha} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x^{\alpha}}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-\alpha x^{\alpha-1}}{x^{2 \alpha}}}=\lim _{x \rightarrow 0^{+}}-\frac{1}{\alpha} x^{\alpha}=0
$$

(c) By a (long and) direct calculation using l'Hospital's rule $x \rightarrow 1 \lim \frac{\arctan \left(\frac{1-x}{1+x}\right)}{x-1}=$ $x \rightarrow 1 \lim \frac{-\frac{1}{1+x^{2}}}{1}=-\frac{1}{2}$. Alternatively, we write $y=\frac{1-x}{1+x}$, so $x-1=\frac{-2 y}{1+y}$ and $\mathrm{x} \rightarrow$ $1 \lim \frac{\arctan \left(\frac{1-x}{1+x}\right)}{x-1}=y \rightarrow 0 \lim \frac{-(y+1) \arctan y}{2 y}=y \rightarrow 0 \lim \frac{-\arctan y-\frac{y+1}{1+y^{2}}}{2}=-\frac{1}{2}$
(d) One has truncated Taylor expansions $\sinh x=x+O\left(x^{3}\right)$ and $\ln (1+y)=y+O\left(y^{2}\right)$ so $\mathrm{x} \rightarrow 0 \lim \frac{\ln \left(1+x^{2}\right)}{\sinh ^{2} x}=1$
(e) $x \rightarrow 1 \lim \frac{\cos \left(\frac{\pi x}{2}\right) \sin (x-1)}{\ln \left((x-1)^{2}\right)}=0$
(f) $x \rightarrow 0+\lim \frac{\cos x-\cos \frac{1}{x}}{e^{x}-e^{\frac{1}{x}}}=0 \quad$ since $e^{\frac{1}{x}}$ goes to infinity and the other terms are bounded.
2. (a) $f(x)=x e^{-x^{2}}$ is of class C^{∞} with $\mathrm{f}^{\prime}(\mathrm{x})=\left(1-2 \mathrm{x}^{2}\right) e^{-x^{2}} f^{\prime \prime}(x)=-2 x\left(3-2 x^{2}\right) e^{-x^{2}}$. Stationary points: $x_{1}=-\frac{\sqrt{2}}{2}$ (strict local minimum, $f\left(x_{1}\right)=-\frac{\sqrt{2}}{2} e^{-\frac{1}{2}}$) and $x_{2}=$ $-\frac{\sqrt{2}}{2}$ (strict local maximum, $f\left(x_{2}\right)=\frac{\sqrt{2}}{2} e^{-\frac{1}{2}}$). These are in fact global extrema since $\lim _{x \rightarrow \pm \infty} f(x)=0$. Inflexion points: $x=0 x= \pm \frac{\sqrt{6}}{2}$.
(b) On the boundary $f(-1)=f(3)=0$ and $\lim _{x \rightarrow \pm \infty} f(x)=\infty$. More precisely, one observes that $\lim _{n \rightarrow-\infty} f(x)-(1-x)=0 \quad \lim _{n \rightarrow \infty} f(x)-(x-1)=0$ so that there are asymptotes $y=1-x$ when $x \rightarrow-\infty$ and $y=x-1$ when $x \rightarrow+\infty . f$ is of class C^{∞} on the open set $]-\infty,-1[\cup] 3, \infty\left[\right.$ with $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{x}-1 \frac{}{\sqrt{(x+1)(x-3)} f^{\prime \prime}(x)=\frac{-4}{\left(\sqrt{(x+1)(x-3))^{3}}\right.}}$. f is strictly monotonic and strictly concave on its domain.
3. (a) We note that $f(x)=\exp (x \ln x-x)$ and so $f^{\prime}(x)=(\ln x) f(x)$. Hence $x=1$ is the unique stationary point of the function f as $f(x)>0$ and $\ln x$ is strictly increasing.
(b) f has a strict local minimum at $x=1$ since $f^{\prime}(x)<0$ if $x<1$ and $f^{\prime}(x)>$ 0 if $x>1$. The truncated Taylor expansion of order 4 at this point is given by $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-1}\left(1+12(x-1)^{2}-16(x-1)^{3}+524(x-1)^{4}\right)$.
(c) Note that we can rewrite a^{b} as $e^{b \ln a}$ using this trick we can write $f(x)$ as

$$
f(x)=e^{x \ln x-x}
$$

Since $g(x)=e^{x}$ is a continuous function, we have

$$
\lim _{x \rightarrow 0^{+}} e^{x \ln x-x}=e^{\lim _{x \rightarrow 0^{+}} x \ln x-x}
$$

We saw in exercise 1.b that $\lim _{x \rightarrow 0^{+}} x \ln x=0$ so

$$
\lim _{x \rightarrow 0^{+}} f(x)=e^{0}=1
$$

By l'Hospital's rule (one may verify the required conditions are satisfied) we get $\mathrm{x} \rightarrow$ $0_{+} \lim \frac{f(x)-1}{x \ln x}=x \rightarrow 0_{+} \lim \frac{f^{\prime}(x)}{1+\ln x}=x \rightarrow 0_{+} \lim \frac{(\ln x) f(x)}{1+\ln x}=\left(x \rightarrow 0_{+} \lim \frac{\ln x}{1+\ln x}\right)\left(x \rightarrow 0_{+} \lim f(x)\right)$ $=\left(x \rightarrow 0_{+} \lim \frac{\frac{1}{x}}{\frac{1}{x}}\right)\left(x \rightarrow 0_{+} \lim f(x)\right)=1$.
4. (a) By the change of variable $s=\sqrt{t}$, i.e., $t=s^{2}, \int_{0}^{+\infty} e^{-\sqrt{t}} d t=\int_{0}^{+\infty} 2 s e^{-s} d s=2 \Gamma(2)=2$

5. (a) The integral converges if $\alpha<1$ and diverges otherwise.
(b) The integral converges if $\alpha>1$ and diverges otherwise.
6. (a) True. This is the statement of l'Hospital's rule.
(b) False. Take, for example, $f(x)=x+\sin x$ and $g(x)=x$. We have $\frac{f^{\prime}(x)}{g^{\prime}(x)}=1+\cos x$ which has no limit at infinity. However, $x \rightarrow+\infty \lim \frac{f(x)}{g(x)}=x \rightarrow+\infty \lim 1+\frac{\sin x}{x}=1$.
(c) False. Take the counterexample for the preceding question.
(d) True. f and g are differentiable on $[x, y]$, so by the mean value theorem, there exists $c \in] x, y\left[\right.$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(y)-f(x)}{g(y)-g(x)}=1$.
(e) True. Since g is differentiable on R, the function $\sin g(x)$ is differentiable on R. If $g(a)=0$, then $\sin g(a)=0$ and we may apply l'Hospital's rule which guarantees the existence of the limit. If $g(a) \neq 0$, then by continuity, the limit is simply $\frac{\sin g(a)}{g(a)}$.
(f) False. Take, for example, $g(x)=x$ and $a=1$. We have $g(a)=1 \neq 0$ (note that in this case l'Hospital's rule does not apply). By continuity, the limit is $\frac{\sinh 1}{1} \neq \cosh 1$.
7. (a) False. Since 7 is odd, f admits an inflexion point at a.
(b) True. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+o\left(x^{n}\right)$ be the Taylor expansion of f to order n at 0 . We then have $f(-x)=a_{0}-a_{1} x+\cdots+(-1)^{n} a_{n} x^{n}+o\left(x^{n}\right)$. Since f is odd and the Taylor expansion is unique, we conclude that $a_{2 m}=0$ for all $0 \leq 2 m \leq n$. As $a_{k}=\frac{f^{(k)}(0)}{k!}$, we obtain the result.
(c) True. This was shown in class.

