Analysis II

Prof. Jan Hesthaven
Spring Semester 2015-2016 Analysis I Course Review
Posted February 19, 2016 An

1. Find the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sin x}{\ln \left(\frac{1}{1+x}\right)}$
(b) $\lim _{x \rightarrow 0+} x^{\alpha} \ln x, \alpha>0$
(c) $\lim _{x \rightarrow 1} \frac{\arctan \left(\frac{1-x}{1+x}\right)}{x-1}$
(d) $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{\sinh ^{2} x}$
(e) $\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi x}{2}\right) \sin (x-1)}{\ln \left((x-1)^{2}\right)}$
(f) $\lim _{x \rightarrow 0+} \frac{\cos x-\cos \frac{1}{x}}{e^{x}-e^{\frac{1}{x}}}$
2. For each of the following functions, find the stationary points, local and global extrema and inflexion points (if any), the intervals of increase and decrease, and describe the asymptotic behaviour (as x approaches $\pm \infty$ and at the boundary of the domain of definition, if there is one).
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x e^{-x^{2}}$
(b) $f:]-\infty,-1] \cup\left[3, \infty\left[\rightarrow \mathbb{R}\right.\right.$ defined by $f(x)=\sqrt{x^{2}-2 x-3}$.
3. Let $f:] 0, \infty[\longrightarrow \mathbb{R}$ be a function defined by

$$
f(x)=x^{x} e^{-x}
$$

(a) Show that $x=1$ is the unique stationary point of the function f.
(b) Study its nature and give the truncated expansion of order 4 at this point.
(c) Show that

$$
\lim _{x \rightarrow 0_{+}} f(x)=1
$$

and calculate

$$
\lim _{x \rightarrow 0_{+}} \frac{f(x)-1}{x \ln x}
$$

4. Compute the following.
(a) $\int_{0}^{+\infty} e^{-\sqrt{t}} d t$
(b) $\int_{1}^{+\infty} \frac{\ln t}{t^{3}} d t$
(c) $\int_{0}^{+\infty} \frac{\arctan t}{1+t^{2}} d t$
5. Determine, in terms of the real number $\alpha>0$, the convergence of the following generalized integrals.
(a) $\int_{0}^{1} \frac{1}{t^{\alpha}} d t$
(b) $\int_{1}^{\infty} \frac{\ln t}{t^{\alpha}} d t$
6. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R} with $g^{\prime}(x) \neq 0$ for all $x \in \mathbb{R}$.
(a) If $f(a)=g(a)=0$ for $a \in \mathbb{R}$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$.TrueFalse
(b) If $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} g(x)=+\infty$, then $\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.TrueFalse
(c) If $\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist, then $\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}$ does not exist.TrueFalse
(d) If there exist $x \neq y \in \mathbb{R}$ such that $f(y)-f(x)=g(y)-g(x)$, then there exists $c \in] x, y[$ such that $f^{\prime}(c)=g^{\prime}(c)$.TrueFalse
(e) Let $a \in \mathbb{R}$, then $\lim _{x \rightarrow a} \frac{\sin g(x)}{g(x)}$ exists.TrueFalse
(f) Let $a \in \mathbb{R}$, then $\lim _{x \rightarrow a} \frac{\sinh g(x)}{g(x)}=\cosh g(a)$.TrueFalse
7. Let I be an open interval, $f, g \in C^{n}(I)$ and $a \in I$.
(a) If $f^{(k)}(a)=0$ for all $0 \leq k<7$ and $f^{(7)}(a)=1$, then f has a minimum at a.
(b) If I is symmetric and f is odd on I, then $f^{(2 k)}(0)=0$ for $0 \leq 2 k \leq n, k \in \mathbb{N}$.
(c) If $f^{(k)}(a)=g^{(k)}(a)=0$ for all $0 \leq k<n$ and $g^{(n)}(a) \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{(n)}(a)}{g^{(n)}(a)}$.True \square Fals
