Multiple Choice Questions 9

1. Let

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + \frac{3}{2}y^2 + 3z^2 + 2x - 6z \le \frac{3}{2} \right\}.$$

We are interested in the extrema of the function $f: E \longrightarrow \mathbb{R}$ defined by

f(x, y, y) = -2x + 3y + 6z + 42.

Say if the following assertions are correct or not :

- f reach it's extremums on E at (-2, 1, 2) and at (0, -1, 0),
- The minimum of f on E is -3 and it's maximum is 19.
- (i) TT,
- (ii) TF,
- (iii) FT,
- (iv) FF.
- 2. What are the values of the minimum m and of the maximum M of the function $f:\overline{\mathcal{B}((0,0),1)} \longrightarrow \mathbb{R}$ defined by

$$f(x,y) = e^{(x-1)y}$$
 ?

- (i) $m = e^{-\frac{1}{4}}$ and $M = e^{\frac{1}{4}}$, (ii) $m = e^{-\frac{1}{4}}$ and $M = e^{\frac{3}{4}}$, (iii) $m = e^{-\frac{3\sqrt{3}}{4}}$ and $M = e^{\frac{1}{4}}$, (iv) $m = e^{-\frac{3\sqrt{3}}{4}}$ and $M = e^{\frac{3\sqrt{3}}{4}}$.
- 3. What are the values of the minimum m and the maximum M of the function f: $\overline{\mathcal{B}((0,0),1)} \longrightarrow \mathbb{R}$ defined by

$$f(x,y) = \frac{1}{4} \left(x^2 + y^2 \right) - xy$$
 ?

(i) $m = -\frac{10+5\sqrt{5}}{10+4\sqrt{5}}$ and $M = -\frac{10-5\sqrt{5}}{10-4\sqrt{5}}$, (ii) $m = -\frac{1}{2}$ and $M = \frac{10-5\sqrt{5}}{10-4\sqrt{5}}$,

- (*iii*) $m = -\frac{1}{2}$ and $M = \frac{1}{2}$, (*iv*) $m = -\frac{1}{4}$ and $M = \frac{3}{4}$.
- 4. We are interested in the extrema of the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by

$$f(x,y) = \int_x^y t e^{-t^2} dt,$$

subject to the constraint

$$e^{x^2} + e^{y^2} - 4 = 0.$$

Say if the following assertions are correct or not :

- Those extrema are reached at $(\pm \sqrt{\ln(3)}, 0)$ and at $(0, \pm \sqrt{\ln(3)})$,
- The minimum is given by -1/3 and the maximum is given by 1/3.
- (i) TT,
- (ii) TF,
- (*iii*) FT,
- (iv) FF.
- 5. What are the values of the minimum m and of the maximum M of the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by

$$f(x,y) = x^2 + y^2 + z^2,$$

subject to the constraints

$$x^{2} + y^{2} + 2z^{2} - 4 = 0$$
 and $xyz - 1 = 0$

- (i) m = -3 and M = 3, (ii) $m = \frac{5-\sqrt{5}}{2}$ and $M = \frac{5+\sqrt{5}}{2}$, (iii) m = 3 and $M = \frac{5+\sqrt{5}}{2}$, (iv) $m = \frac{5-\sqrt{5}}{2}$ and M = 3.
- 6. Let $n \in \mathbb{N}^*$ and $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ the function defined by

$$f(x_1, ..., x_n) = \prod_{k=1}^n x_k^2$$

What is the value of the maximum of f subject to the constraint

$$\sum_{k=1}^{n} x_k^2 = 1 ?$$

- (i) $\frac{1}{4}$, (ii) $\frac{1}{n^2}$, (iii) $\frac{1}{2n}$, (iv) $\frac{1}{n^n}$.
- 7. We want to minimize the distance between P and Q where P is a point of the ellipsoid of equation $x^2 + y^2 + \frac{10}{9}z^2 10^{10} = 0$ and Q is a point of the plane of equation $x + y + z 10^8 = 0$. Say if the following assertions are correct or not. *Hint*: Compute the normal vector of the plane.
 - There is severals point where f reach it's minimum,
 - The distance is given by $d(P,Q) = \frac{10^4}{\sqrt{3}} \left(10^4 \sqrt{290} \right).$
 - (*i*) TT,
 - (*ii*) TF,
 - (iii) FT,
 - (iv) FF.
- 8. Using Lagrange multipliers, find the minimum m of the function defined by

$$f(x,y) = \sqrt{x^2 + 3y^2},$$

subject to the constraint

$$x + y = 3.$$

- (i) $m = \frac{3}{2}\sqrt{3}$,
- (*ii*) $m = 3\sqrt{3}$,
- (iii) m = 3,
- (iv) The minimum doesn't exist.
- 9. If we use Langrange multipliers to maximize the function

$$f(x,y) = 3xy,$$

subject to the constraint

$$x + y = 8,$$

which of the following assertions are corrects?

A) The maximum is smaller or equal at 49,

- B) The maximum is reached at x = 8,
- C) The maximum is reached at y = 4.
 - (i) A, B and C,
- (ii) A and C only,
- (*iii*) B and C only,
- (iv) A only.
- 10. Let consider a field such that its bound is an ellipse of equation $\frac{x^2}{36} + \frac{y^2}{9} 1 = 0$. We want to extend a rectangular flag so that it doesn't exceed the top right quarter of the field (i.e. the upper right quadrant of the plane). What is the maximal area of this flag?
 - (i) 8,
 - (*ii*) 7,
 - (iii) 5,
 - (iv) 9.