Multiple choice test 8 Answers

[1.](iii) is the right answer. First of all, (i) and (ii) are easiy eliminated because f is 2π-periodic with respect to x and y and hence cannot have a unique golbal minimum,and cannot have a saddle point. Furthermore, $\nabla f(x, y)=\binom{\cos (x)}{\sin (x)}$

So, $\nabla f(x, y)=0 \Longleftrightarrow \begin{cases}x=\pi / 2+k_{1} \pi & k_{1} \in \mathbb{Z} \\ y=k_{2} \pi & k_{2} \in \mathbb{Z}\end{cases}$
$(\pi / 2,0)$ being a stationary point, (iv) is eliminated and we can conclude.
[2.] (i) A : $\forall\left(x_{0}, y_{0}\right) \in B\left(0, \frac{1}{2}\right),\left(x_{0}, y_{0}\right)$ is a strict (and global) minimum. Indeed, $\forall(x, y) \neq\left(x_{0}, y_{0}\right),(x, y) \in[-1,1]^{2}$,

$$
f(x, y)-f\left(x_{0}, y_{0}\right)=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=\left[d\left((x, y),\left(x_{0}, y_{0}\right)\right)\right]^{2}>0
$$

B: The four corners of the square are local maxima. One has to notice that the further (x, y) is from $\left(x_{0}, y_{0}\right)$ the bigger $f(x, y)$ is. As $\left(x_{0}, y_{0}\right) \in B\left(0, \frac{1}{2}\right)$, every corner is, locally, the furthest point. We can calculate, for $\epsilon_{1}, \epsilon_{2} \geq 0$,

$$
\begin{gathered}
f(1,1)-f\left(1-\epsilon_{1}, 1-\epsilon_{2}\right)=\left(1-x_{0}\right)^{2}+\left(1-x_{0}-\epsilon_{1}\right)^{2}+\left(1-y_{0}\right)^{2}+\left(1-y_{0}-\epsilon_{2}\right)^{2} \\
=\epsilon_{1}\left(2\left(1-x_{0}\right)-\epsilon_{1}\right)+\epsilon_{2}\left(2\left(1-y_{0}\right)-\epsilon_{2}\right) \\
\geq \epsilon_{1}\left(1-\epsilon_{1}\right)+\epsilon_{2}\left(1-\epsilon_{2}\right)
\end{gathered}
$$

Which is positive when $\epsilon_{1}, \epsilon_{2} \leq 1$.
We have proven that the corner $(1,1)$ is a local maximum $\forall\left(x_{0}, y_{0}\right) \in B\left(0, \frac{1}{2}\right)$. By symmety, this implies the result for the 3 other corners.
[3.](iii) local minimum in $(4,-3)$

$$
\begin{gathered}
\nabla f(x, y)=\binom{2 x-8}{8 y+24} \\
\nabla f(x, y)=0 \Longleftrightarrow(x, y)=(4,-3) \\
\operatorname{Hess}(f)(4,-3)=\left(\begin{array}{ll}
2 & 0 \\
0 & 8
\end{array}\right)
\end{gathered}
$$

The two eigenvalues of $\operatorname{Hess}(f)$ are $2>0$ and $8>0$.
[4.](iv) f has a unique saddle-point.

$$
\nabla f(x, y)=\binom{2 x-3 y^{2}}{3 y^{2}-6 x y}
$$

We notice that $(0,0)$ is a stationary point. But $f(0, y)=y^{3}$ and $f(x, 0)=x^{2}$. Hence, $(0,0)$ is neither an extremum, or a saddle-point. Let's resolve $\nabla f(x, y)=0$ for $(x, y) \neq(0,0)$:

$$
\left\{\begin{array} { l }
{ x = \frac { 3 } { 2 } y ^ { 2 } } \\
{ 3 y ^ { 2 } - 9 y ^ { 3 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=\frac{1}{6} \\
y=\frac{1}{3}
\end{array}\right.\right.
$$

So f admits only one stationary point other than $(0,0)$ so (iv) is obviously the right answer. Let's check that $\left(\frac{1}{6}, \frac{1}{3}\right)$ is a saddle-point.

$$
\begin{gathered}
\operatorname{Hess}(f)\left(\frac{1}{6}, \frac{1}{3}\right)=\left(\begin{array}{cc}
2 & -2 \\
-2 & 1
\end{array}\right) \\
\operatorname{Trace}\left(\operatorname{Hess}(f)\left(\frac{1}{6}, \frac{1}{3}\right)\right)=3 \\
\left|\operatorname{Hess}(f)\left(\frac{1}{6}, \frac{1}{3}\right)\right|=-2<0 \text { so }\left(\frac{1}{6}, \frac{1}{3}\right) \text { is a saddle point }
\end{gathered}
$$

[5.](ii) Local maximum in $\left(-2^{\frac{1}{3}}, 2^{\frac{1}{3}}\right)$

$$
\begin{gathered}
\nabla f(x, y)=\binom{y-\frac{2}{x^{2}}}{x+\frac{2}{y^{2}}} \\
\nabla f(x, y)=0 \Longleftrightarrow\left\{\begin{array}{l}
y=\frac{2}{x^{2}} \\
x+\frac{x^{4}}{2}
\end{array} \Longleftrightarrow 0 \begin{array}{l}
y=2^{\frac{1}{3}} \\
x=-2^{\frac{1}{3}}
\end{array} \quad(\Longrightarrow \text { (ii) or (iii) })\right. \\
\operatorname{Hess}(f)\left(2^{\frac{1}{3}},-2^{\frac{1}{3}}\right)=\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right) \\
\left|\operatorname{Hess}(f)\left(2^{\frac{1}{3}},-2^{\frac{1}{3}}\right)\right|=3>0 \text { so }\left(2^{\frac{1}{3}},-2^{\frac{1}{3}}\right) \text { can't be a saddle point }
\end{gathered}
$$

[6.](ii)

$$
\nabla f(x, y)=\binom{26 x^{2}+y}{6 x^{2}+x} \Longrightarrow(0,0) \text { stationary point. }
$$

If $(x, y) \neq(0,0)$,

$$
\begin{gathered}
\nabla f(x, y)=0 \Longleftrightarrow\left\{\begin{array}{l}
26 * 34 y^{4}+y=0 \\
x=-6 y^{2}
\end{array}\right. \\
(\text { as } y \neq 0) \Longleftrightarrow\left\{\begin{array} { l }
{ y ^ { 3 } = - \frac { 1 } { 4 * 6 ^ { 3 } } } \\
{ x = - 6 y ^ { 2 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=-\frac{1}{6 * 4^{\frac{1}{3}}} \\
x=-\frac{1}{6 * 4^{\frac{2}{3}}}
\end{array}\right.\right.
\end{gathered}
$$

f only admits 2 stationary points. Furthermore, $f(0, y)=2 y^{3}$ so $(0,0)$ is neither a maximum or a minimum.
[7.](iv) $\max _{x, y \in T} f(x, y)=6 . f$ attains its maximum either by a stationary point on \dot{T}, or on the boundary of T .
In \dot{T} :

$$
\nabla f(x, y)=\binom{y-1}{x-3}
$$

So $(3,1)$ is the only stationary point of f in \dot{T} and $\operatorname{Hess}(f)(3,1)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ has a negative determinant.
In $\delta T: \delta T=\{(x, 0): 1 \leq x \leq 6\} \cup\{(1, y): 0 \leq y \leq 5\} \cup\{(x, 6-x): 1 \leq x \leq 6\}$

1. On $A:=\{(x, 0): 1 \leq x \leq 6\}$
$\max _{A} f(x, 0)=\max _{A} 7-x=6$
2. On $B:=\{(1, y): 0 \leq y \leq 5\}$
$\max _{B} f(1, y)=\max _{A} 6-2 y=6$
3. On $C:=\{(x, 6-x): 1 \leq x \leq 6\}$
$\max _{C} f(x, 6-x)=\max _{C} 7+x(6-x)-x-18-3 x=\max _{C}-11+8 x-x^{2}=5$ (attained for $\mathrm{x}=4$)
[8.](iii) Saddle-point, $\forall a \in \mathbb{R}$,

$$
\begin{gathered}
\operatorname{Hess}(f)(1,1)=\left(\begin{array}{cc}
2 & 4 a \\
4 a & -2
\end{array}\right) \\
|\operatorname{Hess}(f)(1,1)|=-4-16 a^{2}<0 \forall a \in \mathbb{R}
\end{gathered}
$$

Hence $(1,1)$ is always a saddle point. [9.](iv) $(0,0,8)$ and $(0,0,-8)$
We're looking for the minimum of the function $f(x, y)=x^{2}+y^{2}+x y+64$ (Which represents the disctance between the origin and the point (x, y, z) for (x, y, z) on the surface $z=x y+64$.

$$
\begin{gathered}
\nabla f(x, y)=\binom{2 x+y}{2 y+x} \\
\nabla f(x, y)=0 \Longleftrightarrow\left\{\begin{array} { l }
{ 2 x + y = 0 } \\
{ 2 y + x = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=0 \\
y=0
\end{array}\right.\right.
\end{gathered}
$$

The closest points to the origin on the surface are obviously stationary points for f (on \mathbb{R}). Hence, (iv) is the right answer.
[10.](i) $10 \times 10 \times 10$

We denote : $\left\{\begin{array}{l}x=\text { length } \\ y=\text { width } \\ z=\text { height } \\ s=\text { surface } \\ v=\text { Volume }\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{l}
s=2(x y+x z+y z) \\
v=x y z
\end{array} \text { But } s=600 \Longrightarrow z=\frac{300-x y}{x+y}\right. \\
& v(x, y)=\frac{x y(300-x y}{x y} \Longleftrightarrow\left\{\begin{array}{l}
\delta_{x} v(x, y)=\frac{\left(300 y-2 x y^{2}\right)(x+y)-x y(300-x y)}{\left(x+y^{2}\right.}=\frac{-x^{2} y^{2}+300 y^{2}-2 x y^{3}}{(x+y)^{2}}=\frac{y^{2}}{(x+y)^{2}}(300-2 x y- \\
\delta_{y} v(x, y)=\frac{x^{2}}{(x+y)^{2}}\left(300-2 x y-y^{2}\right) \quad \text { by symmetry }
\end{array}\right.
\end{aligned}
$$

We can exclude the stationary point $x=y=0$ which is not a maximum.

For $x, y>0$:

$$
\nabla f(x, y)=0 \Longleftrightarrow\left\{\begin{array} { l }
{ 3 0 0 - 2 x y = x ^ { 2 } } \\
{ x ^ { 2 } - y ^ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ x ^ { 2 } = 1 0 0 } \\
{ x = y }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=10 \\
y=10
\end{array}\right.\right.\right.
$$

And we can conclude.

