MULTIPLE CHOICE QUESTIONS 7

1. Consider the function $f(x,y) = e^{x^2} + \sin(y)$ defined over $U = \mathcal{B}(\overline{0}, \frac{\pi}{4})$.

- (i) $\nabla f(x,y) \neq 0$ for all $x,y \in U$,
- (ii) The function is one-to-one on U,
- (iii) Both are corrects,
- (iv) None of (i) and (ii) are corrects.

2. Let

$$\overline{v}(x,y) = \left(\cos\left(\frac{x}{\sqrt{x^2 + y^2}} + \cos(\sqrt{x^2 + y^2})\right), e^{\frac{1}{\sqrt{x^2 + y^2}}}\right).$$

Then v is locally injective in a neighbourhood of (1,1).

- (i) Yes but not over $\mathbb{R}^2/\{\overline{0}\}$,
- (ii) Yes and also on $\mathbb{R}^2/\{\overline{0}\}$,
- (iii) No,
- (iv) Yes, but $J_{\overline{v}}(1,1)$ is not invertible.

3. Let $\overline{v}(x,y) = (e^{xy}, x + x^2 + y^2) \equiv (s,t)$ in a neighborhood of (1,1), and let f(x,y) = xy. If $g(s,t) = f(\overline{v}^{-1}(s,t))$ then $\nabla_{s,t} g(e,3)$ is given by :

- $(i) (e^{-1}, 0)^T,$
- $(ii) (e^{-1}, \frac{1}{3})^T,$
- $(iii) \ (-1,0)^T,$
- $(iv) (-1,1)^T$.

4. Let (x, y) such that f(x, y) = 0 where

$$f(x,y) = x^2 + 2e^y + \sin(xy) - 2$$

in a neighborhood of (0,0). Say if the following assertions are correct or not.

- (i) There is an implicit function $y = \phi(x)$ but ϕ is not derivable,
- (ii) There is an implicit function $y = \phi(x)$ with $\phi'(0) = 0$.
- (iii) There is an implicit function $x = \phi(u)$ with $\phi'(0) = 0$.
- (iv) There is an implicit function $x = \phi(y)$ such that ϕ' is locally C^1 .

5. Let (x, y, z) such that f(x, y, z) = 0 where

$$f(x, y, z) = x^{2} + y^{2} - 3x + y^{3} + xe^{y} + xze^{y} + z^{4}e^{xz} - 1.$$

The equation of the tangent plane whenever x = y = 0 is :

- (i) z = 1,
- (ii) -2x + 4(z 1) = 0,
- (iii) -2x + y + 4(z 1) = 0,
- (iv) Undefined.
- 6. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ whenever

$$2x^3 - y^3 + 9xy + 1 = 0.$$

- (i) $\frac{dy}{dx} = \frac{2x^2 3y}{y^2 + 3x}$,
- $(ii) \frac{dy}{dx} = \frac{3y + 2x^2}{y^2 + 3x},$
- (iii) $\frac{dy}{dx} = \frac{2x^2 + 3y}{y^2 3x}$,
- $(iv) \frac{dy}{dx} = \frac{3y 2x^2}{y^2 3x}.$
- 7. Find $\frac{\partial z}{\partial x}$ whenever

$$xe^{2y} - yz + ze^{3x} = 0.$$

- $(i) \frac{\partial z}{\partial x} = \frac{e^{3x} + y}{e^{2y} + 3ze^{3x}},$
- $(ii) \ \frac{\partial z}{\partial x} = -\frac{e^{2y} + 3ze^{3x}}{e^{3x} y},$
- $(iii) \ \frac{\partial z}{\partial x} = -\frac{e^{2y} + 3ze^{3x}}{e^{3x} + y},$
- (iv) $\frac{\partial z}{\partial x} = -\frac{e^{3x} y}{e^{2y} + 3ze^{3x}}.$
- 8. If z = f(x, y) and $x = r \cos 2\theta$, $y = 2r \sin \theta$, gives $\frac{\partial z}{\partial \theta}$ in function of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
 - (i) $\frac{\partial z}{\partial \theta} = 2r \left(\frac{\partial z}{\partial y} \cos \theta \frac{\partial z}{\partial x} \sin 2\theta \right)$,
 - (ii) $\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \cos 2\theta + \frac{\partial z}{\partial y} \sin \theta$,
 - (iii) $\frac{\partial z}{\partial \theta} = r \left(2 \frac{\partial z}{\partial y} \cos \theta \frac{\partial z}{\partial x} \sin 2\theta \right),$
 - $(iv) \frac{\partial z}{\partial \theta} = 2r \left(\frac{\partial z}{\partial y} \cos \theta + \frac{\partial z}{\partial x} \sin 2\theta \right).$

9. Let

$$g(x,y) = x^3 - y^9 = 0$$

and $(x_0, y_0) = (0, 0)$. Say if the following assertions are corrects or not:

- a) It's not possible to find a function $y = \phi_1(x)$ such that $y_0 = \phi_1(x_0)$, but we can find a function $x = \phi_2(y)$ such that $x_0 = \phi_2(y_0)$,
- **b)** It's not possible to find a function $x = \phi_2(y)$ such that $x_0 = \phi_2(y_0)$ but we can find a function $y = \phi_1(x)$ such that $y_0 = \phi_1(x_0)$,
- c) $g_x(x_0, y_0) = g_y(x_0, y_0) = 0$ and thus none of both variable can be find,
- d) We can find a function $y = \phi_1(x)$ such that $y_0 = \phi_1(x_0)$ and $\phi_1'(x_0) = 0$.

10. Let

$$f(x,y) = e^{x-\alpha y^2} - 1.$$

Say if the following assertions are corrects or not:

- a) f(x,y) = 0 define in a neighborhood of (0,1) an implicit function $y = \phi(x)$, for all $\alpha \in \mathbb{R}$.
- **b)** f(x,y) = 0 define in a neighborhood of $(1, \frac{1}{\sqrt{\alpha}})$ an implicit function $x = \phi(y)$, for all $\alpha \in \mathbb{R}$.
- c) f(x,y) = 0 define in a neighborhood of (0,0) an implicit function $x = \phi(y)$ et $\phi'(0) = 1$, for all $\alpha \in \mathbb{R}$.
- d) f(x,y) = 0 define in a neighborhood of (0,0) an implicit function $x = \phi(y)$ with $\phi'(0) = 0$, for all $\alpha \in \mathbb{R}$.