Multiple Choice Questions 7

1. Consider the function $f(x, y)=e^{x^{2}}+\sin (y)$ defined over $U=\mathcal{B}\left(\overline{0}, \frac{\pi}{4}\right)$.
(i) $\nabla f(x, y) \neq 0$ for all $x, y \in U$,
(ii) The function is one-to-one on U,
(iii) Both are corrects,
(iv) None of (i) and (ii) are corrects.
2. Let

$$
\bar{v}(x, y)=\left(\cos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}+\cos \left(\sqrt{x^{2}+y^{2}}\right)\right), e^{\frac{1}{\sqrt{x^{2}+y^{2}}}}\right) .
$$

Then v is locally injective in a neighbourhood of $(1,1)$.
(i) Yes but not over $\mathbb{R}^{2} /\{\overline{0}\}$,
(ii) Yes and also on $\mathbb{R}^{2} /\{\overline{0}\}$,
(iii) No,
(iv) Yes, but $J_{\bar{v}}(1,1)$ is not invertible.
3. Let $\bar{v}(x, y)=\left(e^{x y}, x+x^{2}+y^{2}\right) \equiv(s, t)$ in a neighborhood of $(1,1)$, and let $f(x, y)=x y$. If $g(s, t)=f\left(\bar{v}^{-1}(s, t)\right)$ then $\nabla_{s, t} g(e, 3)$ is given by :
(i) $\left(e^{-1}, 0\right)^{T}$,
(ii) $\left(e^{-1}, \frac{1}{3}\right)^{T}$,
(iii) $(-1,0)^{T}$,
(iv) $(-1,1)^{T}$.
4. Let (x, y) such that $f(x, y)=0$ where

$$
f(x, y)=x^{2}+2 e^{y}+\sin (x y)-2
$$

in a neighborhood of $(0,0)$. Say if the following assertions are correct or not.
(i) There is an implicit function $y=\phi(x)$ but ϕ is not derivable,
(ii) There is an implicit function $y=\phi(x)$ with $\phi^{\prime}(0)=0$.
(iii) There is an implicit function $x=\phi(u)$ with $\phi^{\prime}(0)=0$.
(iv) There is an implicit function $x=\phi(y)$ such that ϕ^{\prime} is locally \mathcal{C}^{1}.
5. Let (x, y, z) such that $f(x, y, z)=0$ where

$$
f(x, y, z)=x^{2}+y^{2}-3 x+y^{3}+x e^{y}+x z e^{y}+z^{4} e^{x z}-1 .
$$

The equation of the tangent plane whenever $x=y=0$ is :
(i) $z=1$,
(ii) $-2 x+4(z-1)=0$,
(iii) $-2 x+y+4(z-1)=0$,
(iv) Undefined.
6. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ whenever

$$
2 x^{3}-y^{3}+9 x y+1=0
$$

(i) $\frac{d y}{d x}=\frac{2 x^{2}-3 y}{y^{2}+3 x}$,
(ii) $\frac{d y}{d x}=\frac{3 y+2 x^{2}}{y^{2}+3 x}$,
(iii) $\frac{d y}{d x}=\frac{2 x^{2}+3 y}{y^{2}-3 x}$,
(iv) $\frac{d y}{d x}=\frac{3 y-2 x^{2}}{y^{2}-3 x}$.
7. Find $\frac{\partial z}{\partial x}$ whenever

$$
x e^{2 y}-y z+z e^{3 x}=0 .
$$

(i) $\frac{\partial z}{\partial x}=\frac{e^{3 x}+y}{e^{2 y}+3 z e^{3 x}}$,
(ii) $\frac{\partial z}{\partial x}=-\frac{e^{2 y}+3 z e^{3 x}}{e^{3 x}-y}$,
(iii) $\frac{\partial z}{\partial x}=-\frac{e^{2 y}+3 z e^{3 x}}{e^{3 x}+y}$,
(iv) $\frac{\partial z}{\partial x}=-\frac{e^{3 x}-y}{e^{2 y}+3 z e^{3 x}}$.
8. If $z=f(x, y)$ and $x=r \cos 2 \theta, y=2 r \sin \theta$, gives $\frac{\partial z}{\partial \theta}$ in function of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(i) $\frac{\partial z}{\partial \theta}=2 r\left(\frac{\partial z}{\partial y} \cos \theta-\frac{\partial z}{\partial x} \sin 2 \theta\right)$,
(ii) $\frac{\partial z}{\partial \theta}=\frac{\partial z}{\partial x} \cos 2 \theta+\frac{\partial z}{\partial y} \sin \theta$,
(iii) $\frac{\partial z}{\partial \theta}=r\left(2 \frac{\partial z}{\partial y} \cos \theta-\frac{\partial z}{\partial x} \sin 2 \theta\right)$,
(iv) $\frac{\partial z}{\partial \theta}=2 r\left(\frac{\partial z}{\partial y} \cos \theta+\frac{\partial z}{\partial x} \sin 2 \theta\right)$.
9. Let

$$
g(x, y)=x^{3}-y^{9}=0
$$

and $\left(x_{0}, y_{0}\right)=(0,0)$. Say if the following assertions are corrects or not :
a) It's not possible to find a function $y=\phi_{1}(x)$ such that $y_{0}=\phi_{1}\left(x_{0}\right)$, but we can find a function $x=\phi_{2}(y)$ such that $x_{0}=\phi_{2}\left(y_{0}\right)$,
b) It's not possible to find a function $x=\phi_{2}(y)$ such that $x_{0}=\phi_{2}\left(y_{0}\right)$ but we can find a function $y=\phi_{1}(x)$ such that $y_{0}=\phi_{1}\left(x_{0}\right)$,
c) $g_{x}\left(x_{0}, y_{0}\right)=g_{y}\left(x_{0}, y_{0}\right)=0$ and thus none of both variable can be find,
d) We can find a function $y=\phi_{1}(x)$ such that $y_{0}=\phi_{1}\left(x_{0}\right)$ and $\phi_{1}^{\prime}\left(x_{0}\right)=0$.
10. Let

$$
f(x, y)=e^{x-\alpha y^{2}}-1
$$

Say if the following assertions are corrects or not:
a) $f(x, y)=0$ define in a neighborhood of $(0,1)$ an implicit function $y=\phi(x)$, for all $\alpha \in \mathbb{R}$.
b) $f(x, y)=0$ define in a neighborhood of $\left(1, \frac{1}{\sqrt{\alpha}}\right)$ an implicit function $x=\phi(y)$, for all $\alpha \in \mathbb{R}$.
c) $f(x, y)=0$ define in a neighborhood of $(0,0)$ an implicit function $x=\phi(y)$ et $\phi^{\prime}(0)=1$, for all $\alpha \in \mathbb{R}$.
d) $f(x, y)=0$ define in a neighborhood of $(0,0)$ an implicit function $x=\phi(y)$ with $\phi^{\prime}(0)=0$, for all $\alpha \in \mathbb{R}$.

