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MurTiPLE CHOICE QUESTIONS 7 : SOLUTIONS

1. Answer (7). Since
Vi(z,y) = (2ze™, cos(y)),
we have that V f(z,y) # 0 for all x,y € U. Indeed, V f(z,y) = 0 only if x = 0 and

y = 5 + km. But since (O, 5+ /mr) ¢ B(0, 7) the gradient is non zero in U. It’s not
injective because f(z,y) = f(—x,y) for all (x,y) € U.

2. Answer (7). Let denote
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} since for example f(0,1) = f(0,—1), and
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3. Answer (i). Let denote v(z,y) = (vi(z,y),v2(2,9)). Then o' = (v;, vy ). Finally,

g(S,t) = f(@_1(37t)) = vl_l(svt)vgl(sat)'

Therefore
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We know have to compute de Jacobian matrix of v=! at (e,3). First remark that
v 1(e,3) = (1,1). We compute the Jacobian of v at (1,1). It’s given by
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Ju(1,1) = <1+2m 2y>(11)_ (3 2)’

Tor(e,3) = (jvu, 1))_1 _ —i (_23 j) |

We finally conclude that
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Vag(e,3) = (671, 0) )

4. Answer (i7). The function f is C'. We have that

and thus

and thus

D,.f(0,0) = (2z + ycos(zy))| 0 = 0,

and
Dy f(0,0) = (2" + z cos(ay))] ) = 2 7 0.

The implicit function theorem allow us to conclude on the existence. Moreover
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5. Answer (7). We have that f(0,0,1) = 0 and that f is C'. We have that
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—£(0,0,1) = (ze¥ + 423¢™ + zize®
0
z

001 — 4 #0.

Therefore, by the implicit function theorem, there is an implicit function z = ¢(x, y)
in a neighborhood of (0,0, 1) with ¢(0,0) = 1. Moreover



9 D, f(0,0,1
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a—y(O, 0) = ~1 (2y + 3y* + we¥ + xzey)‘

We conclude that the equation of the tangent plane at (0,0,1) is given by z = 1.
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6. Answer (ii7).

d
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7. Answer (ii). As previously
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8. Answer (i). We use the rule

0: _0:00  0:0y
00 0x 90 Oy oo’
where 9 9
9T _ o9y 9 _
50 2rsin(20) and 20 2r cos(0).

The claim follow.

9. Answer (iv). Even if we can’t use the implicit function theorem (since D,g(0,0) =
D,g(0,0) = 0) the function defined by ¢»(y) = y* verify the wanted properties.
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10. Answer (iv). Since

D, f(0,0) = (e"™¥")

— 140,

00
for all @ € R and

D,f(0,0) =0
for all & € R (because if a # 0 we also have that (—2ay26m’0‘y2)‘

is C!, we can use the implicit function theorem and conclude.



