Multiple Choice Questions 7 : Solutions

1. Answer (i). Since

$$\nabla f(x,y) = (2xe^{x^2}, \cos(y))$$

we have that $\nabla f(x, y) \neq 0$ for all $x, y \in U$. Indeed, $\nabla f(x, y) = \mathbf{0}$ only if x = 0 and $y = \frac{\pi}{2} + k\pi$. But since $\left(0, \frac{\pi}{2} + k\pi\right) \notin \mathcal{B}(\mathbf{0}, \frac{\pi}{4})$ the gradient is non zero in U. It's not injective because f(x, y) = f(-x, y) for all $(x, y) \in U$.

2. Answer (i). Let denote

$$v_1(x,y) = \cos\left(\frac{x}{\sqrt{x^2 + y^2}} + \cos\left(\sqrt{x^2 + y^2}\right)\right)$$
 and $v_2(x,y) = e^{\frac{1}{\sqrt{x^2 + y^2}}}$

We have that

$$\begin{aligned} \frac{\partial v_1}{\partial x} &= -\sin\left(\frac{x}{\sqrt{x^2 + y^2}} + \cos(\sqrt{x^2 + y^2})\right) \left(\frac{y^2}{(x^2 + y^2)^{3/2}} - \sin\left(\sqrt{x^2 + y^2}\right) \cdot \frac{x}{\sqrt{x^2 + y^2}}\right),\\ \frac{\partial v_1}{\partial y} &= \sin\left(\frac{x}{\sqrt{x^2 + y^2}} + \cos(\sqrt{x^2 + y^2})\right) \left(\frac{xy}{(x^2 + y^2)^{3/2}} + \sin\left(\sqrt{x^2 + y^2}\right) \cdot \frac{y}{\sqrt{x^2 + y^2}}\right),\\ \frac{\partial v_2}{\partial x} &= -\frac{x}{(x^2 + y^2)^{3/2}} e^{\frac{1}{\sqrt{x^2 + y^2}}},\\ \frac{\partial v_2}{\partial y} &= -\frac{y}{(x^2 + y^2)^{3/2}} e^{\frac{1}{\sqrt{x^2 + y^2}}},\end{aligned}$$

and thus

$$\det \mathcal{J}_{\bar{v}}(1,1) = \\ \det \left(-\sin\left(\frac{1}{\sqrt{2}} + \cos(\sqrt{2})\right) \left(\frac{1}{2\sqrt{2}} - \frac{1}{\sqrt{2}}\sin(\sqrt{2})\right) \\ -\frac{e^{1/\sqrt{2}}}{\sqrt{2}} \\ = \frac{e^{1/\sqrt{2}}}{4} \sin\left(\frac{1}{\sqrt{2}} + \cos(\sqrt{2})\right) \neq 0, \end{aligned} \right)$$

because $\sqrt{2} \in (1, \frac{\pi}{2})$ (since $\sqrt{2} \approx 1, 4$ and $\frac{\pi}{2} \approx 1, 57$) and

$$\frac{1}{\sqrt{2}} \le \frac{1}{\sqrt{2}} + \cos(\sqrt{2}) \le 2 < \frac{3\pi}{4}.$$

It's not invertible avec all $\mathbb{R}^2 \setminus \{(0,0)\}$ since for example f(0,1) = f(0,-1), and thus not one-to-one over all $\mathbb{R}^2 \setminus \{(0,0)\}$.

3. Answer (i). Let denote $\bar{v}(x,y) = (v_1(x,y), v_2(x,y))$. Then $\bar{v}^{-1} = (v_1^{-1}, v_2^{-1})$. Finally,

$$g(s,t) = f(\bar{v}^{-1}(s,t)) = v_1^{-1}(s,t)v_2^{-1}(s,t).$$

Therefore

$$\begin{split} &\frac{\partial g}{\partial s} = v_2^{-1}(s,t) \frac{\partial v_1^{-1}}{\partial s} + v_1^{-1} \frac{\partial v_2^{-1}}{\partial s}, \\ &\frac{\partial g}{\partial t} = v_2^{-1}(s,t) \frac{\partial v_1^{-1}}{\partial t} + v_1^{-1} \frac{\partial v_2^{-1}}{\partial t}. \end{split}$$

We know have to compute de Jacobian matrix of \bar{v}^{-1} at (e, 3). First remark that $\bar{v}^{-1}(e, 3) = (1, 1)$. We compute the Jacobian of \bar{v} at (1, 1). It's given by

$$\mathcal{J}_{\bar{v}}(1,1) = \begin{pmatrix} ye^{xy} & xe^{xy} \\ 1+2x & 2y \end{pmatrix} \Big|_{(1,1)} = \begin{pmatrix} e & e \\ 3 & 2 \end{pmatrix},$$

and thus

$$\mathcal{J}_{\bar{v}^{-1}}(e,3) = \left(\mathcal{J}_{\bar{v}}(1,1)\right)^{-1} = -\frac{1}{e} \begin{pmatrix} 2 & -e \\ -3 & e \end{pmatrix}$$

We finally conclude that

$$\frac{\partial g}{\partial s}(e,3) = 1 \cdot \frac{2}{-e} + 1 \cdot \left(\frac{-3}{-e}\right) = e^{-1},$$
$$\frac{\partial g}{\partial t}(e,3) = 1 \cdot \left(\frac{-e}{-e}\right) + 1 \cdot \left(\frac{e}{-e}\right) = 0,$$

and thus

$$\nabla_{st}g(e,3) = \left(e^{-1},0\right).$$

4. Answer (*ii*). The function f is \mathcal{C}^1 . We have that

$$D_x f(0,0) = (2x + y\cos(xy))|_{(0,0)} = 0,$$

and

$$D_y f(0,0) = (2e^y + x\cos(xy))|_{(0,0)} = 2 \neq 0.$$

The implicit function theorem allow us to conclude on the existence. Moreover

$$\varphi'(0) = -\frac{D_x f(0, \varphi(0))}{D_y f(0, f(0))} = -\frac{0}{2} = 0.$$

5. Answer (i). We have that f(0,0,1) = 0 and that f is \mathcal{C}^1 . We have that

$$\frac{\partial f}{\partial z}f(0,0,1) = \left. (xe^y + 4z^3e^{xy} + z^4xe^{xz}) \right|_{(0,0,1)} = 4 \neq 0.$$

Therefore, by the implicit function theorem, there is an implicit function $z = \varphi(x, y)$ in a neighborhood of (0, 0, 1) with $\varphi(0, 0) = 1$. Moreover

$$\begin{aligned} \frac{\partial \varphi}{\partial x}(0,0,1) &= \frac{D_x f(0,0,1)}{D_z(0,0,1)} \\ &= -\frac{1}{4} \left(2x - 3 + e^y + z e^y + z^5 e^x \right) \Big|_{(0,0,1)} \\ &= 0. \end{aligned}$$

Also,

$$\frac{\partial \varphi}{\partial y}(0,0) = -\frac{1}{4} \left(2y + 3y^2 + xe^y + xze^y \right) \Big|_{(0,0,1)} = 0.$$

We conclude that the equation of the tangent plane at (0, 0, 1) is given by z = 1. 6. Answer *(iii)*.

$$2x^{3} - y^{3} + 9xy + 1 = 0 \implies \frac{\mathrm{d}}{\mathrm{d}x} \left(2x^{3} - y^{3} + 9xy + 1 \right) = 0$$
$$\implies 6x^{2} - 3y^{2} \frac{\mathrm{d}y}{\mathrm{d}x} + 9y + 9x \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\implies \frac{\mathrm{d}y}{\mathrm{d}x} (9x - 3y^{2}) = -9y - 6x^{2}$$
$$\implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x^{2} + 3y}{y^{2} - 3x}.$$

7. Answer (ii). As previously

$$\begin{aligned} xe^{2y} - yz + ze^{3x} &= 0 \implies \frac{\partial}{\partial x}(xe^{2y} - yz + ze^{3x}) = 0 \\ \implies e^{2y} - y\frac{\partial z}{\partial x} + \frac{\partial z}{\partial x}e^{3x} + 3ye^{3x} = 0 \\ \implies \frac{\partial z}{\partial x}(e^{3x} - y) &= -(e^{2y} - 3ze^{3x}) \\ \implies \frac{\partial z}{\partial x} = -\frac{e^{2y+3ye^{3x}}}{e^{3x} - y}. \end{aligned}$$

8. Answer (i). We use the rule

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta},$$

where

$$\frac{\partial x}{\partial \theta} = -2r\sin(2\theta)$$
 and $\frac{\partial y}{\partial \theta} = 2r\cos(\theta)$.

The claim follow.

9. Answer (iv). Even if we can't use the implicit function theorem (since $D_x g(0,0) = D_y g(0,0) = 0$) the function defined by $\varphi_2(y) = y^3$ verify the wanted properties.

10. Answer (iv). Since

$$D_x f(0,0) = (e^{x-\alpha y^2})\Big|_{(0,0)} = 1 \neq 0,$$

for all $\alpha \in \mathbb{R}$ and

$$D_y f(0,0) = 0$$

for all $\alpha \in \mathbb{R}$ (because if $\alpha \neq 0$ we also have that $(-2\alpha y^2 e^{x-\alpha y^2})\Big|_{(0,0)} = 0$). Since f is \mathcal{C}^1 , we can use the implicit function theorem and conclude.