
EPFL - Analyse II Spring Semester 2017

Multiple Choice Questions 6 : Solutions

1. Answer (iv). The Jacobian is given by
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2. Answer (i). A simple computation give
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3. Answer (iv). The gradient is defined for function with real value only.

4. Answers (i), (ii) and (iii). Let’s prove it !

(i) Since Hess(f)ii = ∂2f
∂x2

i
, the claim follow.

(ii)
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(iii) It’s the definition of the Laplacian.

5. Answer (iv). Let v = (v1, v2, v3) and w = (w1, w2, w3). We have that

v ×w =

v2w3 − v3w2
v3w1 − v1w3
v1w2 − v2w1

 .

We can see that (ii) can’t be correct since there is no term of the form D2v3 ·D2w3.
Also, (iii) is not defined since ∇ · v is a scalar and not a vector. Then, the only
possibility is (i). Let show that it’s not correct.

div(v ×w) = w1(D2v3 −D3v2)− v1(D2w3 −D3w2)
+ w2(D3v1 −D1v3)− v2(D3w1 −D1w3)
+ w3(D1v2 −D2v1)− v3(D1w2 −D2w1)
= 〈∇ × v,w〉 − 〈v,∇×w〉 .

1



6. Answer (iv). We have that

∇(v ·w) = ∇
(

n∑
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)
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= (wTJv)T + (vTJw)T

= (wTJv + vTJw)T

7. Answer (iv). Recall that

Jw(0,−2) =
(
Jv(1,−1)

)−1
.

However

Jv(x, y)|(x,y)=(1,−1) =
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and thus
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8. Answer (ii). For the first assertion,

Jv(x, y) =
(

2x− 2y −2x
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)∣∣∣∣∣
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=
(
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)
,

and thus detJv(1, 1) = 4. For the second assertion, let v ∈ C1(R2) locally invert-
ible at x0. Let denote w it’s inverse in a neighborhood of x0. If w ∈ C1, then
detJv(x0) 6= 0 (see lecture). On the other hand, if w /∈ C1, we can’t say any-
thing. Indeed, v(x, y) = (x3, y3) is in C1(R2), it’s inverse is w(s, t) = (s1/3, t1/3) but
detJv(0, 0) = 0.

Remark : If v is an invertible vector field that is C1 and if it’s inverse is also C1,
then v is called a diifeomorphism.

9. Answer (iv). We use the formula

Q(x, y) = f(0, 0)+xDxf(0, 0)+yDyf(0, 0)+x2

2 Dxxf(0, 0)+xyDxyf(0, 0)+y2

2 Dyyf(0, 0).

We find easily

∇f(x, y) = (− sin(x− y) + 2 cos(x− y), sin(x− y)− 2 cos(x− y)
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and thus
∇f(0, 0) = (2,−2).

Also

Hess(f)(x, y) =
(
− cos(x− y)− 2 sin(x− y) cos(x− y) + 2 sin(x− y)
cos(x− y) + 2 sin(x− y) − cos(x− y)− 2 sin(x− y)

)

and thus
Hess(f)(0, 0) =

(
−1 1
1 −1

)
.

Replacing all those values in the formula above allow us to conclude.

10. Answer (i). We use the same formula as the previous exercise and by computation,
we find

∇f(0, 0) = (−2,−1)

and

Hess(f)(0, 0) =
(
−4 −2
−2 −1

)
.

Details of calculation are left to the reader.
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