Multiple Choice Questions 5

1. Let consider the function $w=x e^{\frac{y}{z}}$. If $x=t^{2}, y=1-t$ and $z=1+3 t$ compute $\frac{d w}{d t}$.
(i) $\left(t+\frac{x}{z}+\frac{x y}{z}\right) e^{\frac{y}{z}}$,
(ii) $\left(t+\frac{x}{z}+\frac{x y}{z^{2}}\right) e^{\frac{y}{z}}$,
(iii) $\left(2 t-\frac{x}{z}-3 \frac{x y}{z}\right) e^{\frac{y}{z}}$,
(iv) $\left(2 t-\frac{x}{z}-3 \frac{x y}{z^{2}}\right) e^{\frac{y}{z}}$.
2. Let $z=f(x, y)$ and f a function such that

$$
f(-3,2)=2, \quad D_{1} f(-3,2)=1 \quad \text { and } \quad D_{2} f(-3,2)=-2
$$

The equation of the hyperplane of the graph of f at $(-3,2)$ is given by :
(i) $z=2+x+2 y$,
(ii) $z=2+x-2 y$,
(iii) $z=2-x+2 y$,
(iv) $z=9+x-2 y$.
3. Let $f(x, y)=\sqrt{7-x^{2}-2 y^{2}}$. The linear approximation of f at $(2,-1)$ is given by
(i) $7-x+2 y$,
(ii) $7-2 x+2 y$,
(iii) $-5-2 x+2 y$,
(iv) None of the previous choices.
4. $\operatorname{Hess}\left(\frac{1}{r}\right)(3,4)$ for $r=\sqrt{x^{2}+y^{2}}$ is given by
(i)

$$
\left(\begin{array}{ll}
\frac{12}{5^{5}} & \frac{3}{5^{5}} \\
\frac{3}{5^{5}}, & \frac{17}{5^{5}}
\end{array}\right)
$$

(ii)

$$
\left(\begin{array}{cc}
\frac{12}{5^{5}} & \frac{5}{5^{5}} \\
\frac{3}{5^{5}}, & \frac{17}{5^{5}}
\end{array}\right)
$$

(iii)

$$
\left(\begin{array}{cc}
\frac{2}{5^{5}} & \frac{36}{5^{5}} \\
\frac{36}{5^{5}}, & \frac{23}{5^{5}}
\end{array}\right)
$$

(iv)

$$
\left(\begin{array}{cc}
\frac{2}{5^{5}} & \frac{3}{5^{5}} \\
\frac{3}{5^{5}} & \frac{23}{5^{5}}
\end{array}\right)
$$

5. Let $z=f(x, y)=x \ln (x+11 y)$. Let define $h(t)=f(x, y)$ where $x=\sin (t)$ and $y=\cos (t)$. What is $h^{\prime}(t)$?
(i) $\ln (x+11 y) \cos (t)+\frac{x(\sin (t)-\cos (t))}{x+11 y}$,
(ii) $\ln (x+11 y) \cos (t)-\frac{11 x \sin (t)}{x+11 y}$,
(iii) $\ln (x+11 y) \sin (t)+\frac{x(\sin (t)-11 \cos (t))}{x+11 y}$,
(iv) $\ln (x+11 y) \cos (t)+\frac{x(\cos (t)-11 \sin (t))}{x+11 y}$.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3} y}{x^{2}+y^{2}} & \text { si }(x, y) \neq(0,0) \\
0 & \text { si }(x, y)=(0,0)
\end{array}\right.
$$

- $D_{x} f(0,0) \neq D_{y} f(0,0)$,
- $D_{x y} f(0,0) \neq D_{y x} f(0,0)$,
(i) TT ,
(ii) TF ,
(iii) FT,
(iv) FF.

7. Let f as in question 6 .

- The orientation of the normal vector \mathbf{n} of the graph of f at $(0,0,0)$ is $(1,1,-1)$,
- The equation of the tangent plane at $(0,0,0)$ is given by $z=p(x, y)=6 x+y$.
(i) TT ,
(ii) TF ,
(iii) FT,
(iv) FF.

8. Let $U \subset \mathbb{R}^{n}$ an open and $f, g: U \longrightarrow \mathbb{R}$ two functions that are $\mathcal{C}^{2}(U)$. Then $\operatorname{Hess}(f g)$ in U is given by :
(1) $g \operatorname{Hess}(f)+f \operatorname{Hess}(g)$,
(2) $g \operatorname{Hess}(f)+f \operatorname{Hess}(g)+\nabla(f) \nabla(g)^{T}+\nabla(g) \nabla(f)^{T}$,
(3) $g \operatorname{Hess}(f)+f \operatorname{Hess}(g)+\nabla(f)^{T} \nabla(g)+\nabla(g)^{T} \nabla(f)$,
(4) Doesn't necessarily exist.
