Multiple Choice Questions 5: Solutions

1. Answer (iv).

- By a direct calculation :

$$
w(x, y, z)=w\left(t^{2}, 1-t, 1+3 t\right)=t^{2} e^{\frac{1-t}{1+3 t}}
$$

Therefore,

$$
\begin{aligned}
\frac{\mathrm{d} w}{\mathrm{~d} t} & =2 t e^{\frac{1-t}{1+3 t}}+t^{2} e^{\frac{1-t}{1+3 t}}\left(\frac{1-t}{1+3 t}\right)^{\prime} \\
& =2 t e^{\frac{1-t}{1+3 t}}+t^{2} e^{\frac{1-t}{1+3 t}}\left(\frac{-(1+3 t)-3(1-t)}{(1+3 t)^{2}}\right) \\
& =e^{\frac{y}{z}}\left(2 t+x\left(\frac{-z-3 y}{z^{2}}\right)\right) \\
& =e^{\frac{y}{z}}\left(2 t-\frac{x}{z}-\frac{3 y x}{z^{2}}\right) .
\end{aligned}
$$

- We can also use the chain rule as following : let $\kappa(t)=\left(t^{2}, 1-t, 1+3 t\right)$. Then $w(t)=w(\kappa(t))$ and thus

$$
\begin{aligned}
w^{\prime}(t) & =\left\langle\nabla w(\kappa(t)), \kappa^{\prime}(t)\right\rangle \\
& =\left\langle\left(e^{\frac{y}{z}}, \frac{x}{z} e^{\frac{y}{z}}, \frac{-x y}{z^{2}} e^{\frac{y}{z}}\right)^{T},(2 t,-1,3)^{T}\right\rangle \\
& =e^{\frac{y}{z}} 2 t+\frac{x}{z} e^{\frac{y}{z}}(-1)-\frac{x y}{z^{2}} e^{\frac{y}{z}} 3 \\
& =e^{\frac{y}{z}}\left(2 t-\frac{x}{z}-\frac{3 x y}{z^{2}}\right) .
\end{aligned}
$$

2. Answer (iv). The equation of the hyperplane is given at \boldsymbol{a} by

$$
z=\nabla f(\boldsymbol{a}) \cdot(\boldsymbol{x}-\boldsymbol{a})+f(\boldsymbol{a}) .
$$

Applying this formula for $\boldsymbol{a}=(-3,2)$, we get

$$
\begin{aligned}
z=2+(1,-2) \cdot(x-(-3), y-2)=2 & \Longleftrightarrow z=2+(1,-2) \cdot(x+3, y-2) \\
& \Longleftrightarrow z=2+x+3-2(y-2) \\
& \Longleftrightarrow z=9+x-2 y .
\end{aligned}
$$

Remark : It may be a good thing to check that $(-3,2,2)$ verify the equation of the hyperplane that we have found to be sure we didn't do any mistakes in our calculation.
3. Answer (ii). The linear approximation at \boldsymbol{a} is given by

$$
f(\boldsymbol{x})=\nabla f(\boldsymbol{a}) \cdot(\boldsymbol{x}-\boldsymbol{a})+f(\boldsymbol{a}) .
$$

We have that

$$
\begin{aligned}
\frac{\partial f}{\partial x}(x, y) & =\frac{\partial}{\partial x} \sqrt{7-x^{2}-2 y^{2}} \\
& =\frac{-x}{\sqrt{7-x^{2}-y-2}} \\
\frac{\partial f}{\partial y}(x, y) & =\frac{\partial}{\partial y} \sqrt{7-x^{2}-2 y^{2}} \\
& =\frac{-2 y}{\sqrt{7-x^{2}-2 y^{2}}} .
\end{aligned}
$$

Therefore,

$$
\nabla f(2,-1)=(-2,2)
$$

Applying the formula above with $\boldsymbol{a}=(2,-1)$ we get

$$
z=7+2 y-2 x .
$$

4. Answer (iii). Let first observe that

$$
\frac{\partial r}{\partial x}=\frac{x}{r} \quad \text { and } \quad \frac{\partial r}{\partial y}=\frac{y}{r} .
$$

Therefore

$$
\frac{\partial}{\partial x}\left(\frac{1}{r}\right)=\frac{-x}{r^{3}}
$$

and thus

$$
\frac{\partial^{2}}{\partial x^{2}} \frac{1}{r}=\frac{\partial}{\partial x}\left(-\frac{x}{r^{3}}\right)=\frac{-r^{3}+x \cdot 3 r^{2} \cdot \frac{x}{r}}{r^{6}}=\frac{3 x^{2}-r^{2}}{r^{5}}
$$

and by an argument of symmetry, we also have

$$
\frac{\partial^{2}}{\partial y^{2}}\left(\frac{1}{r}\right)=\frac{3 y^{2}-r^{2}}{r^{5}}
$$

Finally

$$
\frac{\partial^{2}}{\partial x \partial y}\left(\frac{1}{r}\right)=\frac{\partial}{\partial y}\left(\frac{y}{r^{3}}\right)=\frac{3 x y}{r^{5}}=\frac{\partial^{2}}{\partial y \partial x}\left(\frac{1}{r}\right),
$$

and thus

$$
\text { Hess }\left(\frac{1}{r}\right)(x, y)=\frac{1}{r^{5}}\left(\begin{array}{cc}
3 x^{2}-r^{2} & 3 x y \\
3 x y & 3 y^{2}-r^{2}
\end{array}\right) .
$$

For $(x, y)=(3,4)$ we have $r=5$ and thus

$$
\operatorname{Hess}\left(\frac{1}{r}\right)(3,4)=\frac{1}{5^{5}}\left(\begin{array}{cc}
2 & 36 \\
36 & 23
\end{array}\right) .
$$

5. Answer (iv). As the question 1, we'll use the formula

$$
\frac{\mathrm{d} f(\kappa(t))}{\mathrm{d} t}=\left\langle\nabla f(\kappa(t)), \kappa^{\prime}(t)\right\rangle
$$

for $f(x, y)=x \ln (x+11 y)$ and $\kappa(t)=(\sin (t), \cos (t))$. We have that

$$
\begin{gathered}
\nabla f(x, y)=\left(\ln (x+11 y)+\frac{x}{x+11 y}, \frac{11 x}{x+11 y}\right) \\
\kappa^{\prime}(t)=(\cos (t),-\sin (t))
\end{gathered}
$$

and thus

$$
\begin{aligned}
h^{\prime}(t) & =\left\langle\nabla f(\kappa(t)), \kappa^{\prime}(t)\right\rangle \\
& =\left(\ln (x+11 y)+\frac{x}{x+11 y}\right) \cos (t)+\frac{11 x}{x+11 y}(-\sin (t)) \\
& =\ln (x+11 y) \cos (t)+\frac{x}{x+11 y}(\cos (t)-11 \sin (t))
\end{aligned}
$$

6. Answer (iii). For the first assertion,

$$
D_{x} f(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} \frac{f(x, 0)}{x}=\lim _{x \rightarrow 0} \frac{x^{3} \cdot 0}{x^{2}+0^{2}}=0
$$

and

$$
D_{y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}=\lim _{y \rightarrow 0} \frac{0 y}{0+y^{2}}=0
$$

Therefore

$$
D_{x} f(0,0)=D_{y} f(0,0)=0 .
$$

For the second assertion, we have that

$$
\nabla f(x, y)=\left(D_{x} f, D_{y} f\right)=\left(\frac{3 x^{2} y}{x^{2}+y^{2}}-\frac{2 x^{4} y}{\left(x^{2}+y^{2}\right)^{2}}, \frac{x^{3}}{x^{2}+y^{2}}-\frac{2 x^{3} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)
$$

Therefore

$$
D_{x y} f(0,0)=\lim _{x \rightarrow 0} \frac{D_{y}(x, 0)-D_{y}(0,0)}{x}=\lim _{x \rightarrow 0} \frac{x}{x}=1,
$$

and

$$
D_{y x} f(0,0)=\lim _{y \rightarrow 0} \frac{D_{x}(0, y)-D_{x}(0,0)}{y}=0 .
$$

Therefore

$$
D_{x y} f(0,0) \neq D_{y x} f(0,0)
$$

Remark : The fact that $D_{x y} f(0,0) \neq D_{y x} f(0,0)$ tell us that f is not \mathcal{C}^{2} at $\mathbf{0}$.
7. Answer (iv). In the previous question, we compute $D_{x} f(0,0)=D_{y} f(0,0)=0$. Since the partial derivative are continuous at 0, we have that

$$
\nabla f(\mathbf{0})=\mathbf{0} .
$$

By the way, the normal orientation is $(0,0,1)$ and thus, the equation of the hyperplane is given by $z=0$.
8. Answer (ii). We have that

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}(f g) & =\frac{\partial}{\partial x_{i}}\left(g \frac{\partial f}{\partial x_{j}}+f \frac{\partial g}{\partial x_{j}}\right) \\
& =\frac{\partial g}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}+g \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}+\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}+f \frac{\partial^{2} g}{\partial x_{i} \partial x_{j}} .
\end{aligned}
$$

Therefore,

$$
\operatorname{Hess}(f g)(\bar{x})_{i j}=g \operatorname{Hess}(f)(\bar{x})_{i j}+f \operatorname{Hess}(f)(\bar{x})_{i j}+\nabla f(\bar{x}) \nabla g(\bar{x})_{i j}^{T}+\nabla g(\bar{x}) \nabla f(\bar{x})_{i j}^{T},
$$

and the claim follow.

