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MurTiPLE CHOICE QUESTIONS 5 : SOLUTIONS

1. Answer (iv).

e By a direct calculation :

w(x,y, Z) = w(tzv I t, 1+ Bt) = tQBﬁ.
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e We can also use the chain rule as following : let x(t) = (t*,1 —t,1 + 3t). Then
w(t) = w(k(t)) and thus
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2. Answer (iv). The equation of the hyperplane is given at a by
z=Vf(a) (x—a)+ f(a).
Applying this formula for a = (—3,2), we get

z2=2+(1,-2)- (= (-3),y—2)=2 <= z2=2+(1,-2)- (x +3,y — 2)
= z=24+2+3-2(y—2)
— z=9+4+x—2y.

Remark : It may be a good thing to check that (—3,2,2) verify the equation of
the hyperplane that we have found to be sure we didn’t do any mistakes in our
calculation.



3. Answer (7). The linear approximation at a is given by

f(®) =V f(a) (x—a)+ f(a)
We have that
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Therefore,

Applying the formula above with a = (2, —1) we get

2 =T+ 2y — 2x.

4. Answer (i77). Let first observe that
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and by an argument of symmetry, we also have
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For (z,y) = (3,4) we have r = 5 and thus
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Finally

and thus



5. Answer (iv). As the question 1, we'll use the formula

df(s(t)) _ /
—m = (VIR(0), /(1))

for f(z,y) = xIn(z + 11y) and k(t) = (sin(t), cos(t)). We have that

x 11z
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Vi) = (e + 1)+ T ),

K'(t) = (cos(t), — sin(t))
and thus

— <ln(1: + 11y) + . +x11y> cos(t) + e (= sin(?))

= In(z + 11y) cos(t) + . &

6. Answer (4i7). For the first assertion,

— 3 .
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Therefore
D, f(0,0) = D,f(0,0) = 0.
For the second assertion, we have that
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Therefore

Day f(0,0) # Dya f(0,0).

Remark : The fact that D,,f(0,0) # D, f(0,0) tell us that f is not C? at 0.



7. Answer (iv). In the previous question, we compute D,f(0,0) = D, f(0,0) = 0.

Since the partial derivative are continuous at 0, we have that
Vf(0)=0.

By the way, the normal orientation is (0,0, 1) and thus, the equation of the hyper-
plane is given by z = 0.

. Answer (ii). We have that

o2 of
dw:07, 79 = o, ( You, fax)
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Therefore,

Hess(fg)(2)y; = gHess(f)(2)y; + fHess(f)(2)y; + Vf(2)Vg(2); + Vg(2)V f(2)],

and the claim follow.



