
EPFL - Analyse II Spring Semester 2017

Multiple Choice Questions 5 : Solutions

1. Answer (iv).

• By a direct calculation :

w(x, y, z) = w(t2, 1− t, 1 + 3t) = t2e
1−t

1+3t .

Therefore,

dw
dt = 2te

1−t
1+3t + t2e

1−t
1+3t

( 1− t
1 + 3t

)′

= 2te
1−t

1+3t + t2e
1−t

1+3t

(
−(1 + 3t)− 3(1− t)

(1 + 3t)2

)

= e
y
z

(
2t+ x

(−z − 3y
z2

))
= e

y
z

(
2t− x

z
− 3yx

z2

)
.

• We can also use the chain rule as following : let κ(t) = (t2, 1 − t, 1 + 3t). Then
w(t) = w(κ(t)) and thus

w′(t) = 〈∇w(κ(t)), κ′(t)〉

=
〈(

e
y
z ,
x

z
e

y
z ,
−xy
z2 e

y
z

)T

, (2t,−1, 3)T

〉

= e
y
z 2t+ x

z
e

y
z (−1)− xy

z2 e
y
z 3

= e
y
z

(
2t− x

z
− 3xy

z2

)
.

2. Answer (iv). The equation of the hyperplane is given at a by

z = ∇f(a) · (x− a) + f(a).

Applying this formula for a = (−3, 2), we get

z = 2 + (1,−2) · (x− (−3), y − 2) = 2 ⇐⇒ z = 2 + (1,−2) · (x+ 3, y − 2)
⇐⇒ z = 2 + x+ 3− 2(y − 2)
⇐⇒ z = 9 + x− 2y.

Remark : It may be a good thing to check that (−3, 2, 2) verify the equation of
the hyperplane that we have found to be sure we didn’t do any mistakes in our
calculation.
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3. Answer (ii). The linear approximation at a is given by

f(x) = ∇f(a) · (x− a) + f(a).

We have that
∂f

∂x
(x, y) = ∂

∂x

√
7− x2 − 2y2

= −x√
7− x2 − y − 2

∂f

∂y
(x, y) = ∂

∂y

√
7− x2 − 2y2

= −2y√
7− x2 − 2y2 .

Therefore,
∇f(2,−1) = (−2, 2).

Applying the formula above with a = (2,−1) we get

z = 7 + 2y − 2x.

4. Answer (iii). Let first observe that

∂r

∂x
= x

r
and ∂r

∂y
= y

r
.

Therefore
∂

∂x

(1
r

)
= −x

r3

and thus
∂2

∂x2
1
r

= ∂

∂x

(
− x
r3

)
=
−r3 + x · 3r2 · x

r

r6 = 3x2 − r2

r5

and by an argument of symmetry, we also have

∂2

∂y2

(1
r

)
= 3y2 − r2

r5 .

Finally
∂2

∂x∂y

(1
r

)
= ∂

∂y

(
y

r3

)
= 3xy

r5 = ∂2

∂y∂x

(1
r

)
,

and thus
Hess

(1
r

)
(x, y) = 1

r5

(
3x2 − r2 3xy

3xy 3y2 − r2

)
.

For (x, y) = (3, 4) we have r = 5 and thus

Hess
(1
r

)
(3, 4) = 1

55

(
2 36
36 23

)
.
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5. Answer (iv). As the question 1, we’ll use the formula

df(κ(t))
dt = 〈∇f(κ(t)), κ′(t)〉 ,

for f(x, y) = x ln(x+ 11y) and κ(t) = (sin(t), cos(t)). We have that

∇f(x, y) =
(

ln(x+ 11y) + x

x+ 11y ,
11x

x+ 11y

)
,

κ′(t) = (cos(t),− sin(t))

and thus

h′(t) = 〈∇f(κ(t)), κ′(t)〉

=
(

ln(x+ 11y) + x

x+ 11y

)
cos(t) + 11x

x+ 11y (− sin(t))

= ln(x+ 11y) cos(t) + x

x+ 11y (cos(t)− 11 sin(t)).

6. Answer (iii). For the first assertion,

Dxf(0, 0) = lim
x→0

f(x, 0)− f(0, 0)
x

= lim
x→0

f(x, 0)
x

= lim
x→0

x3 · 0
x2 + 02 = 0,

and
Dy(0, 0) = lim

y→0

f(0, y)− f(0, 0)
y

= lim
y→0

0y
0 + y2 = 0.

Therefore
Dxf(0, 0) = Dyf(0, 0) = 0.

For the second assertion, we have that

∇f(x, y) = (Dxf,Dyf) =
(

3x2y

x2 + y2 −
2x4y

(x2 + y2)2 ,
x3

x2 + y2 −
2x3y2

(x2 + y2)2

)
.

Therefore
Dxyf(0, 0) = lim

x→0

Dy(x, 0)−Dy(0, 0)
x

= lim
x→0

x

x
= 1,

and
Dyxf(0, 0) = lim

y→0

Dx(0, y)−Dx(0, 0)
y

= 0.

Therefore
Dxyf(0, 0) 6= Dyxf(0, 0).

Remark : The fact that Dxyf(0, 0) 6= Dyxf(0, 0) tell us that f is not C2 at 0.
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7. Answer (iv). In the previous question, we compute Dxf(0, 0) = Dyf(0, 0) = 0.
Since the partial derivative are continuous at 0, we have that

∇f(0) = 0.

By the way, the normal orientation is (0, 0, 1) and thus, the equation of the hyper-
plane is given by z = 0.

8. Answer (ii). We have that

∂2

∂xi∂xj

(fg) = ∂

∂xi

(
g
∂f

∂xj

+ f
∂g

∂xj

)

= ∂g

∂xi

∂f

∂xj

+ g
∂2f

∂xi∂xj

+ ∂f

∂xi

∂g

∂xj

+ f
∂2g

∂xi∂xj

.

Therefore,

Hess(fg)(x̄)ij = gHess(f)(x̄)ij + fHess(f)(x̄)ij +∇f(x̄)∇g(x̄)T
ij +∇g(x̄)∇f(x̄)T

ij,

and the claim follow.
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