Multiple Choice Questions 4

1. All directional derivatives exists for $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at the point $\overrightarrow{0}$ if :
(i) The gradient exist,
(ii) The partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are continuous at $\overrightarrow{0}$,
(iii) All directional derivatives exists on $\mathbb{R}^{2} \backslash\{(0,0)\}$,
(iv) None of the previous choices.
2. If all directional derivatives exists for u at $\overrightarrow{0}$:

- The gradient exist,
- They are continuous at $\overrightarrow{0}$.
(i) TT ,
(ii) TF ,
(iii) FT,
(iv) FF.

3. For $f(x, y)=e^{x^{2} y}$, the derivative in $(1,1)$ along the vector $(1,1)$ is
(i) 3 ,
(ii) e^{3},
(iii) $3 e$,
(iv) None of the previous choices.
4. If $z=f(x, y)$ and Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ a function such that

$$
\frac{\partial f}{\partial x}(3,5)=4 \quad \text { and } \quad \frac{\partial f}{\partial y}(3,5)=-7
$$

Let define $z(t)=f(g(t), h(t))$ where the functions g and h are such that

$$
\begin{array}{lr}
g(5)=3, & g^{\prime}(5)=4 \\
h(5)=5, & h^{\prime}(5)=2 .
\end{array}
$$

What is $z^{\prime}(5) ?$
(i) 10 ,
(ii) 4 ,
(iii) 2,
(iv) 6.
5. Compute

$$
\lim _{(x, y) \rightarrow(12,4)} x y \cos (x-3 y) .
$$

(i) 4,
(ii) 48,
(iii) 0 ,
(iv) -4 .
6. What is

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{5 x y^{2}}{x^{2}+y^{2}} ?
$$

(i) 10 ,
(ii) 0 ,
(iii) 5 ,
(iv) The limit doesn't exist.
7. Let $f(x, y)=x \cos (x+y)+\sin (x+y)$. Compute $\frac{\partial f}{\partial x}$.
(i) $x \cos (x+y)$,
(ii) $2 \cos (x+y)-x \sin (x+y)$,
(iii) $-2 x \sin (x+y)$,
(iv) $-x \sin (x+y)$.
8. Let

$$
f(x, y)=\frac{1}{2} x \arctan \left(\frac{y}{x}\right) .
$$

Compute $D_{x y} f$.
(i) $f_{x y}=\frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$,
(ii) $f_{x y}=\frac{x^{2} y}{2\left(x^{2}+y^{2}\right)}$,
(iii) $f_{x y}=-\frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$,
(iv) $f_{x y}=-\frac{x y^{2}}{2\left(x^{2}+y^{2}\right)}$.
9. Let

$$
z=\frac{y}{x} f\left(\frac{y}{x}\right) .
$$

Compute $\frac{\partial z}{\partial x}$.
(i) $\frac{\partial z}{\partial x}=\frac{1}{y^{2}}\left\{y f\left(\frac{x}{y}\right)+x f^{\prime}\left(\frac{x}{y}\right)\right\}$,
(ii) $\frac{\partial z}{\partial x}=y f\left(\frac{x}{y}\right)+x f^{\prime}\left(\frac{x}{y}\right)$,
(iii) $\frac{\partial z}{\partial x}=-\frac{1}{x}\left\{f\left(\frac{x}{y}\right)+x y f^{\prime}\left(\frac{x}{y}\right)\right\}$,
(iv) $\frac{\partial z}{\partial x}=-\frac{1}{x^{2}}\left\{y f\left(\frac{x}{y}\right)-x f^{\prime}\left(\frac{x}{y}\right)\right\}$.

