Multiple Choice Questions 4

- 1. All directional derivatives exists for $u: \mathbb{R}^2 \to \mathbb{R}$ at the point $\vec{0}$ if :
 - (i) The gradient exist,
 - (*ii*) The partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are continuous at $\vec{0}$,
 - (*iii*) All directional derivatives exists on $\mathbb{R}^2 \setminus \{(0,0)\},\$
 - (iv) None of the previous choices.
- 2. If all directional derivatives exists for u at $\vec{0}$:
 - The gradient exist,
 - They are continuous at $\vec{0}$.
 - (i) TT,
 - (*ii*) TF,
 - (iii) FT,
 - (iv) FF.
- 3. For $f(x,y) = e^{x^2y}$, the derivative in (1, 1) along the vector (1, 1) is
 - (i) 3,
 - (*ii*) e^3 ,
 - (iii) 3e,
 - (iv) None of the previous choices.
- 4. If z = f(x, y) and Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ a function such that

$$\frac{\partial f}{\partial x}(3,5) = 4$$
 and $\frac{\partial f}{\partial y}(3,5) = -7.$

Let define z(t) = f(g(t), h(t)) where the functions g and h are such that

$$g(5) = 3, \quad g'(5) = 4$$

 $h(5) = 5, \quad h'(5) = 2.$

What is z'(5)?

- (i) 10,
- (ii) 4,
- (iii) 2,
- (iv) 6.

5. Compute

$$\lim_{(x,y)\to(12,4)} xy\cos(x-3y).$$

- (i) 4,
- (ii) 48,
- *(iii)* 0,
- (iv) -4.
- 6. What is

$$\lim_{(x,y)\to(0,0)}\frac{5xy^2}{x^2+y^2}$$
?

- (i) 10,
- (ii) 0,
- (iii) 5,
- (iv) The limit doesn't exist.

7. Let $f(x, y) = x \cos(x + y) + \sin(x + y)$. Compute $\frac{\partial f}{\partial x}$.

(i) $x \cos(x + y)$, (ii) $2 \cos(x + y) - x \sin(x + y)$, (iii) $-2x \sin(x + y)$, (iv) $-x \sin(x + y)$.

 $8. \ Let$

$$f(x,y) = \frac{1}{2}x \arctan\left(\frac{y}{x}\right).$$

Compute $D_{xy}f$.

(i)
$$f_{xy} = \frac{xy^2}{(x^2+y^2)^2},$$

(ii) $f_{xy} = \frac{x^2y}{2(x^2+y^2)},$

(*iii*)
$$f_{xy} = -\frac{xy^2}{(x^2+y^2)^2}$$
,
(*iv*) $f_{xy} = -\frac{xy^2}{2(x^2+y^2)}$.

9. Let

$$z = \frac{y}{x} f\left(\frac{y}{x}\right).$$

Compute
$$\frac{\partial z}{\partial x}$$
.
(i) $\frac{\partial z}{\partial x} = \frac{1}{y^2} \left\{ yf\left(\frac{x}{y}\right) + xf'\left(\frac{x}{y}\right) \right\},$
(ii) $\frac{\partial z}{\partial x} = yf\left(\frac{x}{y}\right) + xf'\left(\frac{x}{y}\right),$
(iii) $\frac{\partial z}{\partial x} = -\frac{1}{x} \left\{ f\left(\frac{x}{y}\right) + xyf'\left(\frac{x}{y}\right) \right\},$
(iv) $\frac{\partial z}{\partial x} = -\frac{1}{x^2} \left\{ yf\left(\frac{x}{y}\right) - xf'\left(\frac{x}{y}\right) \right\}.$