Multiple choice test 3

- 1. For $f(x, y, z) = e^{xy^2z^3}, (\nabla f)^T =$ (i) $(e^{xy^2z^3}, 2ye^{xy^2z^3}, 3z^2e^{xy^2z^3})$
 - (i) $(y^2 z^3 e^{y^2 z^3}, 2xy z^3 e^{2xy z^3}, 3xy^2 z^2 e^{3xy^2 z^2})$
 - (*iii*) $(e^{xy^2z^3}, e^{xy^2z^3}, e^{xy^2z^3})$
 - (iv) None of the choices (i)-(iii).
- 2. Let $f : \mathbb{R} \to \mathbb{R}^2$ with $f_1(t) = \frac{e^t}{\sqrt{2}}$ and $f_2(t) = \frac{e^{-t}}{\sqrt{2}}$. The length of the graph of f between t = 1 and t = 2 is equal to :

(i)
$$\frac{e^2 - 1}{e^1 - 1}$$

(ii) $\int_1^2 \frac{1}{2} e^t (1 + e^{-4t})^{1/2} dt$
(iii) $\int_1^2 \frac{1}{\sqrt{2}} e^t (1 + e^{-4t})^{1/2} dt$
(iv) $\frac{e^2 - e^1 + e^{-1} - e^{-2}}{\sqrt{2}}$

(RECALL: The graph of f is the curve $\binom{t}{f(t)}$ in \mathbb{R}^3 .)

3. Let f be defined on \mathbb{R}^2 as :

$$f(x,y) = \begin{cases} 0, & \text{if } (x,y) = 0\\ x^2 \ln(|x|), & \text{if } y = 0\\ y^2 \ln(|y|), & \text{if } x = 0\\ x^2 \ln(|x|) + y^2 \ln(|y|), & \text{otherwise.} \end{cases}$$

- (i) $D_{xy}f = D_{yx}f$ but $D_{xx}f$ is not continuous.
- (*ii*) $D_{xy}f \neq D_{yx}f$ but they are both continuous.
- (*iii*) None of the functions $D_{xy}f$, $D_{yx}f$ or $D_{xx}f$ is continuous at (0,0).
- (iv) All the alternatives (i)-(iii) are true.

4. $f: \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable at $\vec{0}$ if and only if there exists a vector \vec{b} such that :

$$\lim_{\bar{h} \to \vec{0}, \bar{h} \neq \vec{0}} \frac{f(\vec{h}) - f(\vec{0}) - \langle \vec{h}, \vec{b} \rangle}{||\vec{h}||_{\infty}} = 0.$$

 $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable if and only if $f \in C^1(\mathbb{R}^2)$.

- (i) TT
- (ii) TF
- (iii) FT
- (iv) FF

5. What is

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - 9y^2}{x^2 + y^2} \quad ?$$

- (i) 0
- (ii) 1
- (iii) -9
- (iv) The limit does not exist.
- 6. Let $f : \mathbb{R}^2 \mapsto \mathbb{R}$ the function defined by :

$$f(x,y) = \begin{cases} \frac{x^2}{y}, & y \neq 0\\ 0, & y = 0. \end{cases}$$

We can assert that :

- a) f is continuous;
- b) f is differentiable.
 - (i) TT
 - (ii) TF
- (iii) FT
- (iv) FF

7. Consider two curves $f,g:[0,1]\to \mathbb{R}$ defined as :

$$f(t) = \begin{pmatrix} 1 - 4(t - \frac{1}{2})^2 \\ 0 \end{pmatrix}$$
 and $g(t) = \begin{pmatrix} 1/2 \\ (t - \frac{1}{4})^2 \end{pmatrix}$,

and also h = f - g. We can assert that :

- a) f and g are regular;
- b) h is regular.
 - (i) TT
 - (ii) TF
- (iii) FT
- (iv) FF

8. Let $g: \mathbb{R} \to \mathbb{R}$ and $f: \mathbb{R}^2 \to \mathbb{R}$ the function defined as :

$$f(x,y) = \begin{cases} \frac{xe^x - ye^y}{x - y}, & \text{si } x \neq y \\ g(x), & \text{si } y = x. \end{cases}$$

This function is continuous if and only if :

- (*i*) $g(x) = (x+1)e^x$
- $(ii) \ g(x) = 0$
- (iii) g(x) = 1
- (iv) None of the three above.