Multiple choice test 3

1. For $f(x, y, z)=e^{x y^{2} z^{3}},(\nabla f)^{T}=$
(i) $\left(e^{x y^{2} z^{3}}, 2 y e^{x y^{2} z^{3}}, 3 z^{2} e^{x y^{2} z^{3}}\right)$
(ii) $\left(y^{2} z^{3} e^{y^{2} z^{3}}, 2 x y z^{3} e^{2 x y z^{3}}, 3 x y^{2} z^{2} e^{3 x y^{2} z^{2}}\right)$
(iii) $\left(e^{x y^{2} z^{3}}, e^{x y^{2} z^{3}}, e^{x y^{2} z^{3}}\right)$
(iv) None of the choices (i)-(iii).
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ with $f_{1}(t)=\frac{e^{t}}{\sqrt{2}}$ and $f_{2}(t)=\frac{e^{-t}}{\sqrt{2}}$. The length of the graph of f between $t=1$ and $t=2$ is equal to :
(i) $\frac{e^{2}-1}{e^{1}-1}$
(ii) $\int_{1}^{2} \frac{1}{2} e^{t}\left(1+e^{-4 t}\right)^{1 / 2} d t$
(iii) $\int_{1}^{2} \frac{1}{\sqrt{2}} e^{t}\left(1+e^{-4 t}\right)^{1 / 2} d t$.
(iv) $\frac{e^{2}-e^{1}+e^{-1}-e^{-2}}{\sqrt{2}}$
(RECALL: The graph of f is the curve $\binom{t}{f(t)}$ in \mathbb{R}^{3}.)
3. Let f be defined on \mathbb{R}^{2} as :

$$
f(x, y)=\left\{\begin{array}{lr}
0, & \text { if }(x, y)=0 \\
x^{2} \ln (|x|), & \text { if } y=0 \\
y^{2} \ln (|y|), & \text { if } x=0 \\
x^{2} \ln (|x|)+y^{2} \ln (|y|), & \text { otherwise }
\end{array}\right.
$$

(i) $D_{x y} f=D_{y x} f$ but $D_{x x} f$ is not continuous.
(ii) $D_{x y} f \neq D_{y x} f$ but they are both continuous.
(iii) None of the functions $D_{x y} f, D_{y x} f$ or $D_{x x} f$ is continuous at $(0,0)$.
(iv) All the alternatives (i)-(iii) are true.
4. $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is differentiable at $\overrightarrow{0}$ if and only if there exists a vector \vec{b} such that:

$$
\lim _{\bar{h} \rightarrow \overline{0}, \vec{h} \neq \overrightarrow{0}} \frac{f(\vec{h})-f(\overrightarrow{0})-<\vec{h}, \vec{b}>}{\|\vec{h}\|_{\infty}}=0
$$

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable if and only if $f \in C^{1}\left(\mathbb{R}^{2}\right)$.
(i) TT
(ii) TF
(iii) FT
(iv) FF
5. What is

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-9 y^{2}}{x^{2}+y^{2}} ?
$$

(i) 0
(ii) 1
(iii) -9
(iv) The limit does not exist.
6. Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ the function defined by :

$$
f(x, y)= \begin{cases}\frac{x^{2}}{y}, & y \neq 0 \\ 0, & y=0\end{cases}
$$

We can assert that :
a) f is continuous;
b) f is differentiable.
(i) TT
(ii) TF
(iii) FT
(iv) FF
7. Consider two curves $f, g:[0,1] \rightarrow \mathbb{R}$ defined as:

$$
f(t)=\binom{1-4\left(t-\frac{1}{2}\right)^{2}}{0} \text { and } g(t)=\binom{1 / 2}{\left(t-\frac{1}{4}\right)^{2}}
$$

and also $h=f-g$. We can assert that :
a) fand g are regular ;
b) h is regular.
(i) TT
(ii) TF
(iii) FT
(iv) FF
8. Let $g: \mathbb{R} \mapsto \mathbb{R}$ and $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ the function defined as :

$$
f(x, y)=\left\{\begin{array}{c}
\frac{x e^{x}-y e^{y}}{x-y}, \text { si } x \neq y \\
g(x), \text { si } y=x
\end{array}\right.
$$

This function is continuous if and only if :
(i) $g(x)=(x+1) e^{x}$
(ii) $g(x)=0$
(iii) $g(x)=1$
(iv) None of the three above.

