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MULTIPLE CHOICE TEST 3
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2. Let f: R — R? with fi(t) =
between ¢t = 1 and t = 2 is equal to :
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(RECALL: The graph of f is the curve (cht)) in R3.)
3. Let f be defined on R? as :
0, if (z,y)=0
2% In(|z|), ify=0

y~In(ly)),
2*In(jz|) + v*In(|y|),  otherwise.

(i) Dyyf = Dy f but Dy, f is not continuous.

(i1) Dyyf # Dyef but they are both continuous.

(73) None of the functions D, f, Dy, f or D, f is continuous at (0, 0).
)

(17v) All the alternatives (i)-(iii) are true.
4. f:R"~ R is differentiable at 0 if and only if there exists a vector b such that :
f(h) = f(0)— < h,b>
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f : R? — R is differentiable if and only if f € C*(R?).
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5. What is

2?2 — 9y?
lim —— 7
(2)=(00) 2% + y?
(i) 0
(i) 1
(13) —9
(tv) The limit does not exist.
6. Let f: R? — R the function defined by :
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We can assert that :
a) f is continuous;

b) f is differentiable.
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7. Consider two curves f,g: [0,1] — R defined as :
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and also h = f — g. We can assert that :

a) f and g are regular ;
b) h is regular.
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8 Let g: R~ R and f:R? — R the function defined as :
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This function is continuous if and only if :
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