Multiple Choice Questions 2

- 1. Let θ the angle of intersection between the line of equation $\sqrt{3}y + 2x = 5/2$ and the circle of equation $x^2 + y^2 = 1$ at $(\frac{1}{2}, \frac{\sqrt{3}}{2})$. What is $\cos \theta$?
 - (*i*) $\frac{\pi}{3}$,
 - (*ii*) $\frac{1}{2}$,
 - $(iii) \frac{3}{7},$
 - $(iv) \frac{5}{\sqrt{28}}.$

2. $f : \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at x_0 if :

- (i) $\forall \varepsilon > 0, \exists \delta > 0 : |f(x) f(x_0)| < \delta \implies |x x_0| < \varepsilon$,
- (*ii*) $f(x_0) = \lim_{n \to \infty} f\left(x_0 + \frac{1}{n}\right),$
- (*iii*) $\not\exists x_n \longrightarrow x_0$ such that $f(x_n)$ doesn't converge to $f(x_0)$,
- (*iv*) For all sequence $(x_n)_{n\in\mathbb{N}}$ that converge to x_0 such that $(f(x_n))_{n\in\mathbb{N}}$ converge, $f(x_n) \longrightarrow f(x_0)$.
- 3. Let consider the functions F_1 and F_2 on $E = \mathcal{C}([0, 1])$ defined by

$$F_1(f) = \int_0^1 f(x) dx$$
 and $F_2(f) = f\left(\frac{1}{1}\right)$.

- F_1 is continuous with refer to the norm $\|\cdot\|_{\infty}$,
- F_2 is continuous with refer to the norm $\|\cdot\|_2$.
- (i) TT,
- (ii) TF,
- (*iii*) FT,
- (iv) FF.
- 4. The curves

$$f_1(t) = (t, 2t, t^2)$$
 and $f_2(t) = (1, 3 - t, t^3),$

for $t \in [0, 1]$ intersect at θ . What is $\cos(\theta)$?

 $\begin{array}{ccc} (i) & \frac{4}{3\sqrt{10}} \\ (ii) & \frac{2}{5\sqrt{3}} \\ (iii) & \frac{\sqrt{3}}{2} \\ (iv) & \frac{\pi}{3} \end{array}$

- 5. Say if the following assertion are corrects or not :
 - The space $(E, \|\cdot\|_4)$ with $E = \mathcal{C}([0, 1])$ and

$$||f - g||_4 = \left(\int (f(x) - g(x))^4 dx\right)^{1/4}$$

is complete.

- The metric space $(E, \|\cdot\|_2)$ with $E = \overline{\mathcal{B}((0,0), 1)}$ is complete.
- (i) TT,
- (ii) TF,
- (iii) FT,
- (iv) FF.

6. Say if the following assertion are corrects or not :

- Let $f: [0,\pi] \to \mathbb{R}^2$ defined by $f(t) = (\sin^2(t), \cos^2(t))$. Is f regular?
- Let $g: [0,1] \to \mathbb{R}^2$ defined by

$$g(t) = \begin{cases} (t,t) & t \in [0,\frac{1}{2}] \\ \left(1-t,(1-t)^2\right) & t \in (\frac{1}{2},1]. \end{cases}$$

Is g a curve ?

- (i) TT,
- (ii) TF,
- (iii) FT,
- (iv) FF.
- 7. Let $f : \mathbb{R}^d \to \mathbb{R}$ a bounded function (i.e. there is M > 0 such that $|f(x)| \leq M$ for all $x \in \mathbb{R}^d$). Then, there are $x \in \mathbb{R}^d$, $y \in \mathbb{R}$ and a sequence $(x_n)_{n \in \mathbb{N}}$ such that $x_n \neq x$ for all n but

$$x_n \longrightarrow x$$
 and $f(x_n) \longrightarrow y$.

- (i) T,
- (ii) F.