Multiple Choice Questions 2

1. Let θ the angle of intersection between the line of equation $\sqrt{3} y+2 x=5 / 2$ and the circle of equation $x^{2}+y^{2}=1$ at $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. What is $\cos \theta$?
(i) $\frac{\pi}{3}$,
(ii) $\frac{1}{2}$,
(iii) $\frac{3}{7}$,
(iv) $\frac{5}{\sqrt{28}}$.
2. $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at x_{0} if :
(i) $\forall \varepsilon>0, \exists \delta>0:\left|f(x)-f\left(x_{0}\right)\right|<\delta \Longrightarrow\left|x-x_{0}\right|<\varepsilon$,
(ii) $f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f\left(x_{0}+\frac{1}{n}\right)$,
(iii) $\nexists x_{n} \longrightarrow x_{0}$ such that $f\left(x_{n}\right)$ doesn't converge to $f\left(x_{0}\right)$,
(iv) For all sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ that converge to x_{0} such that $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converge, $f\left(x_{n}\right) \longrightarrow f\left(x_{0}\right)$.
3. Let consider the functions F_{1} and F_{2} on $E=\mathcal{C}([0,1])$ defined by

$$
F_{1}(f)=\int_{0}^{1} f(x) \mathrm{d} x \quad \text { and } \quad F_{2}(f)=f\left(\frac{1}{1}\right) .
$$

- F_{1} is continuous with refer to the norm $\|\cdot\|_{\infty}$,
- F_{2} is continuous with refer to the norm $\|\cdot\|_{2}$.
(i) TT ,
(ii) TF ,
(iii) FT,
(iv) FF.

4. The curves

$$
f_{1}(t)=\left(t, 2 t, t^{2}\right) \quad \text { and } \quad f_{2}(t)=\left(1,3-t, t^{3}\right),
$$

for $t \in[0,1]$ intersect at θ. What is $\cos (\theta)$?
(i) $\frac{4}{3 \sqrt{10}}$
(ii) $\frac{2}{5 \sqrt{3}}$
(iii) $\frac{\sqrt{3}}{2}$
(iv) $\frac{\pi}{3}$
5. Say if the following assertion are corrects or not :

- The space $\left(E,\|\cdot\|_{4}\right)$ with $E=\mathcal{C}([0,1])$ and

$$
\|f-g\|_{4}=\left(\int(f(x)-g(x))^{4} \mathrm{~d} x\right)^{1 / 4}
$$

is complete.

- The metric space $\left(E,\|\cdot\|_{2}\right)$ with $E=\overline{\mathcal{B}((0,0), 1)}$ is complete.
(i) TT ,
(ii) TF ,
(iii) FT,
(iv) FF.

6. Say if the following assertion are corrects or not :

- Let $f:[0, \pi] \rightarrow \mathbb{R}^{2}$ defined by $f(t)=\left(\sin ^{2}(t), \cos ^{2}(t)\right)$. Is f regular ?
- Let $g:[0,1] \rightarrow \mathbb{R}^{2}$ defined by

$$
g(t)= \begin{cases}(t, t) & t \in\left[0, \frac{1}{2}\right] \\ \left(1-t,(1-t)^{2}\right) & t \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Is g a curve?
(i) TT ,
(ii) TF ,
(iii) FT,
(iv) FF.
7. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a bounded function (i.e. there is $M>0$ such that $|f(x)| \leq M$ for all $\left.x \in \mathbb{R}^{d}\right)$. Then, there are $x \in \mathbb{R}^{d}, y \in \mathbb{R}$ and a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $x_{n} \neq x$ for all n but

$$
x_{n} \longrightarrow x \quad \text { and } \quad f\left(x_{n}\right) \longrightarrow y
$$

(i) T ,
(ii) F.

