Multiple Choice Questions 13

1. Let consider the following equation

$$\frac{dy}{dx} = \frac{y(x)}{x^2}.$$

- For all $a, b \in (0, +\infty)$, the equation has a unique solution on [a, b] such that $y(a) = y_0$, for all $y_0 \in (0, +\infty)$ fixed,
- There is a non-zero solution over $\mathbb{R} \setminus \{0\}$.
- (i) TT,
- (*ii*) FT,
- (iii) TF,
- (iv) FF.
- 2. Let consider the following equation :

$$\frac{dy}{dt} = \cos(t) \cdot e^{-y(t)}.$$

- The general solution is given by $\ln(\sin(t) + C), C \in \mathbb{R}$,
- If y(0) = -1, the unique solution is defined on all bounded interval of \mathbb{R} .
- (i) TT,
- (*ii*) FT,
- (iii) TF,
- (iv) FF.
- 3. Let consider the following equation

$$\frac{2x}{1+(x^2+y)^2} + \frac{y'}{1+(x^2+y)^2} = 0, \quad y(0) = 0.$$

- There is a function H such that y given by H(x, y(x)) = H(0, 0) is a solution of the equation,
- $\arctan(x^2 + y)$ is solution of the equation.
- (i) TT,
- (*ii*) FT,
- (iii) TF,
- (iv) FF.

4. What is the general solution of the following equation

$$y'(t) - \frac{1}{t}y(t) - (y(t))^2 = 0$$
 ?

Hint: make the substitution y(t) = -1/z(t).

(i) $y(t) = -\frac{2t}{C+t^2}, C \in \mathbb{R}.$

(*ii*)
$$y(t) = -\frac{2tC_1}{C_2 + t^2}, C_1, C_2 \in \mathbb{R}.$$

- (*iii*) $y(t) = -\frac{2tC}{t^2}, C \in \mathbb{R}.$
- (iv) None of the previous choices.
- 5. Let consider the differential equation

$$ty'' + (1 - 2t)y' + (t - 1)y = 0,$$

over $(0, +\infty)$.

- $t \mapsto e^t$ is a solution.
- The general solution is given by $t \mapsto (\lambda \ln(t) + \mu)e^t$, $\lambda, \mu \in \mathbb{R}$.
- (i) TT,
- (*ii*) FT,
- (iii) TF,
- (iv) FF.
- 6. Let $u: (0, +\infty) \longrightarrow \mathbb{R}$ the solution of

$$u'(t) = \sqrt{u(t) + \sin(t)} - \cos(t),$$

with $\lim_{t\to 0^+} u(t) = 0$. Find u. Hint: make an judicious substitution.

- (i) $u(t) = \frac{1}{4}t^2 + \sin(t)$,
- (ii) $u(t) = \frac{1}{4}t^2C \sin(t), C \in \mathbb{R},$
- (*iii*) $u(t) = \frac{1}{4}t^2 C\sin(t), \ C \in \mathbb{R},$
- (iv) None of the previous choices.
- 7. Solve the following differential equation :

$$y'' - 4y' + 4y = 0.$$

The solutions are :

- (i) $y(t) = ae^{2t} + be^{-2t}$, with $a, b \in \mathbb{R}$,
- (*ii*) $y(t) = (a+bt)e^{2t}$, with $a, b \in \mathbb{R}$,

- (*iii*) $y(t) = a\cos(2t) + b\sin(2t)$, with $a, b \in \mathbb{R}$, (*iv*) $y(t) = a\cos(2t)e^{-t} + b\sin(2t)e^{-t}$, with $a, b \in \mathbb{R}$.
- 8. Solve the following differential equation :

$$3y'' + 6y' + 12y = 12t$$

The solutions are :

- (i) $y(t) = (a+bt)e^{-t+t\sqrt{3}} + t \frac{1}{2}$, with $a, b \in \mathbb{R}$, (ii) $y(t) = ae^{-t}\cos(t\sqrt{3}) + be^{-t}\sin(t\sqrt{3})$, with $a, b \in \mathbb{R}$,
- (*iii*) $y(t) = ae^{-t}\cos(\frac{\pi}{3}t) + be^{-t}\sin(\frac{\pi}{3}t) + t \frac{1}{2}$, with $a, b \in \mathbb{R}$,
- (iv) $y(t) = ae^{-t}\cos(t\sqrt{3}) + be^{-t}\sin(t\sqrt{3}) + t \frac{1}{2}$, with $a, b \in \mathbb{R}$.
- 9. Solve the following differential equation :

$$x^2y'' + xy' - y = x^2.$$

The solutions are : *Hint* : make the substitution $z(t) = y(e^t)$.

- (i) $y(x) = ax + \frac{x^2}{3}$, with $a \in \mathbb{R}$,
- (*ii*) $y(x) = \frac{a}{x} + \frac{x^2}{3}$, with $a \in \mathbb{R}$,
- (*iii*) $y(x) = \frac{a}{x} + bx + \frac{x^2}{3}$, with $a, b \in \mathbb{R}$,
- (iv) None of the previous choices.

10. Solve the following differential equation :

$$y'' + 4y' + 3y = 0.$$

The solutions are :

(i)
$$y(t) = ae^{-3t} + be^{-t}$$
, with $a, b \in \mathbb{R}$,

- (*ii*) $y(t) = (a + bt)e^{-4t}$, with $a, b \in \mathbb{R}$,
- (*iii*) $y(t) = a\cos(-3t) + b\sin(-t)$, with $a, b \in \mathbb{R}$,
- (iv) None of the previous choices.