Multiple Choice Questions 13

1. Let consider the following equation

$$
\frac{d y}{d x}=\frac{y(x)}{x^{2}} .
$$

- For all $a, b \in(0,+\infty)$, the equation has a unique solution on $[a, b]$ such that $y(a)=y_{0}$, for all $y_{0} \in(0,+\infty)$ fixed,
- There is a non-zero solution over $\mathbb{R} \backslash\{0\}$.
(i) TT,
(ii) FT,
(iii) TF ,
(iv) FF.

2. Let consider the following equation :

$$
\frac{d y}{d t}=\cos (t) \cdot e^{-y(t)} .
$$

- The general solution is given by $\ln (\sin (t)+C), C \in \mathbb{R}$,
- If $y(0)=-1$, the unique solution is defined on all bounded interval of \mathbb{R}.
(i) TT ,
(ii) FT,
(iii) TF ,
(iv) FF.

3. Let consider the following equation

$$
\frac{2 x}{1+\left(x^{2}+y\right)^{2}}+\frac{y^{\prime}}{1+\left(x^{2}+y\right)^{2}}=0, \quad y(0)=0 .
$$

- There is a function H such that y given by $H(x, y(x))=H(0,0)$ is a solution of the equation,
- $\arctan \left(x^{2}+y\right)$ is solution of the equation.
(i) TT ,
(ii) FT,
(iii) TF ,
(iv) FF.

4. What is the general solution of the following equation

$$
y^{\prime}(t)-\frac{1}{t} y(t)-(y(t))^{2}=0 \quad ?
$$

Hint: make the substitution $y(t)=-1 / z(t)$.
(i) $y(t)=-\frac{2 t}{C+t^{2}}, C \in \mathbb{R}$.
(ii) $y(t)=-\frac{2 t C_{1}}{C_{2}+t^{2}}, C_{1}, C_{2} \in \mathbb{R}$.
(iii) $y(t)=-\frac{2 t C}{t^{2}}, C \in \mathbb{R}$.
(iv) None of the previous choices.
5. Let consider the differential equation

$$
t y^{\prime \prime}+(1-2 t) y^{\prime}+(t-1) y=0
$$

over $(0,+\infty)$.

- $t \longmapsto e^{t}$ is a solution.
- The general solution is given by $t \longmapsto(\lambda \ln (t)+\mu) e^{t}, \lambda, \mu \in \mathbb{R}$.
(i) TT ,
(ii) FT,
(iii) TF ,
(iv) FF.

6. Let $u:(0,+\infty) \longrightarrow \mathbb{R}$ the solution of

$$
u^{\prime}(t)=\sqrt{u(t)+\sin (t)}-\cos (t)
$$

with $\lim _{t \rightarrow 0^{+}} u(t)=0$. Find u. Hint: make an judicious substitution.
(i) $u(t)=\frac{1}{4} t^{2}+\sin (t)$,
(ii) $u(t)=\frac{1}{4} t^{2} C-\sin (t), C \in \mathbb{R}$,
(iii) $u(t)=\frac{1}{4} t^{2}-C \sin (t), C \in \mathbb{R}$,
(iv) None of the previous choices.
7. Solve the following differential equation :

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

The solutions are :
(i) $y(t)=a e^{2 t}+b e^{-2 t}$, with $a, b \in \mathbb{R}$,
(ii) $y(t)=(a+b t) e^{2 t}$, with $a, b \in \mathbb{R}$,
(iii) $y(t)=a \cos (2 t)+b \sin (2 t)$, with $a, b \in \mathbb{R}$,
(iv) $y(t)=a \cos (2 t) e^{-t}+b \sin (2 t) e^{-t}$, with $a, b \in \mathbb{R}$.
8. Solve the following differential equation :

$$
3 y^{\prime \prime}+6 y^{\prime}+12 y=12 t
$$

The solutions are :
(i) $y(t)=(a+b t) e^{-t+t \sqrt{3}}+t-\frac{1}{2}$, with $a, b \in \mathbb{R}$,
(ii) $y(t)=a e^{-t} \cos (t \sqrt{3})+b e^{-t} \sin (t \sqrt{3})$, with $a, b \in \mathbb{R}$,
(iii) $y(t)=a e^{-t} \cos \left(\frac{\pi}{3} t\right)+b e^{-t} \sin \left(\frac{\pi}{3} t\right)+t-\frac{1}{2}$, with $a, b \in \mathbb{R}$,
(iv) $y(t)=a e^{-t} \cos (t \sqrt{3})+b e^{-t} \sin (t \sqrt{3})+t-\frac{1}{2}$, with $a, b \in \mathbb{R}$.
9. Solve the following differential equation :

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2} .
$$

The solutions are : Hint : make the substitution $z(t)=y\left(e^{t}\right)$.
(i) $y(x)=a x+\frac{x^{2}}{3}$, with $a \in \mathbb{R}$,
(ii) $y(x)=\frac{a}{x}+\frac{x^{2}}{3}$, with $a \in \mathbb{R}$,
(iii) $y(x)=\frac{a}{x}+b x+\frac{x^{2}}{3}$, with $a, b \in \mathbb{R}$,
(iv) None of the previous choices.
10. Solve the following differential equation :

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

The solutions are :
(i) $y(t)=a e^{-3 t}+b e^{-t}$, with $a, b \in \mathbb{R}$,
(ii) $y(t)=(a+b t) e^{-4 t}$, with $a, b \in \mathbb{R}$,
(iii) $y(t)=a \cos (-3 t)+b \sin (-t)$, with $a, b \in \mathbb{R}$,
(iv) None of the previous choices.

