Multiple Choice Questions 11

1. If $f: I \rightarrow \mathbb{R}$ is continuous and bounded, a solution of the equation

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=f(x), \\
y\left(t_{0}\right)=y_{0}, \quad t_{0} \in I^{0}
\end{array}\right.
$$

always exist.
(i) T,
(ii) F.
2. If $f: I \rightarrow \mathbb{R}$ is continuous and bounded, there is always a unique local solution to

$$
\frac{d y}{d x}=f(y) .
$$

(i) T,
(ii) F.
3. A sufficient condition to have the existence of a unique solution to

$$
\frac{d^{3} y}{d x^{3}}=\frac{d^{2} y}{d x^{2}} f_{2}(x)+f_{0}(y)
$$

on a bounded interval $I \subseteq \mathbb{R}$ with

$$
y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime}, \quad \text { and } \quad y^{\prime \prime}(0)=y_{0}^{\prime \prime}
$$

is
(i) f_{2} and f_{0} are continuous,
(ii) f_{2} is Lipschitz and f_{0} is continuous,
(iii) f_{2} is continuous and f_{0} is Lipschitz,
(iv) None of the previous choice.
4. Let $f \in \mathcal{C}^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$.

The equation

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=f(t, y) \\
y(0)=0
\end{array}\right.
$$

has
(i) a local solution but not necessarily unique,
(ii) a unique global solution
(iii) we don't have enough informations to conclude,
(iv) Has not necessarily a global solution.
5. For the following differential equation

$$
\frac{d y}{d x}=9 x^{2} y
$$

the general solution is :
(i) $y(x)=A e^{3 x^{2}}$,
(ii) $y(x)=A e^{3 x^{4}}$,
(iii) $y(x)=A e^{x^{2}}$,
(iv) $y(x)=A e^{3 x^{3}}$.
6. If y_{0} satisfy

$$
\left\{\begin{array}{l}
\left(x^{2}+9\right) \frac{d y}{d x}=x y \\
y(0)=3
\end{array}\right.
$$

the value of $y_{0}(9)$ is :
(i) $y_{0}(9)=17^{\frac{1}{2}} 3$,
(ii) $y_{0}(9)=10^{\frac{1}{2}} 3$,
(iii) $y_{0}(9)=10^{\frac{1}{2}} 4$,
(iv) $y_{0}(9)=40$.
7. If y satisfy

$$
\left\{\begin{array}{l}
(x+3) y^{\prime}=y-1 \\
y(1)=2
\end{array}\right.
$$

then, the value of $y(4)$ is :
(i) $y(4)=-1$,
(ii) $y(4)=3$,
(iii) $y(4)=\frac{11}{4}$,
(iv) $y(4)=\frac{7}{2}$.
8. Solve the following differential equation

$$
y^{\prime}=\frac{5 x^{4} y}{\ln y}
$$

The solutions are given by :
(i) $y=e^{ \pm \sqrt{x^{5}+C}}$,
(ii) $y=e^{ \pm \sqrt{2 x^{5}+C}}$,
(iii) $y=e^{\sqrt{2 x^{5}+C}}$,
(iv) $y=e^{ \pm \sqrt{2 x^{4}+C}}$.
9. Solve the following differential equation :

$$
\frac{d u}{d t}=42+6 u+7 t+u t
$$

The solutions are given by :
(i) $u=-7+C e^{\frac{1}{2} t^{2}+6 t}$,
(ii) $u=-7+C e^{\frac{1}{2} t+6 t^{2}}$,
(iii) $u=-7+C e^{\frac{1}{2} t^{2}-6 t}$,
(iv) $u=-7+C e^{t^{2}+6 t}$.

