
EPFL - Analysis II Spring Semester 2017

Multiple choice test 12 answers

[1.] a. The solution is : y(t) =
t∫

0
f(x)dx + y0 ∀t ∈ I.

[2.] b. Recall the counter-example from class : y′ = 2
√
|y|, y0 = 0 has 2 solutions on

[-1,1], which are y1(t) = 0 and y2(t) = t2

[3.]b. f2 continuous and f0 Lipschitz.
An equation of order 3 in dimension 1 = An equation of order 1 in dimension 3. So we

consider

 y
y′

y′′

 instead of y .

Let Y =

y1
y2
y3

 and the equation becomes :

Y ′ =

 y2
y3

y3.f2(x) + f0(y1)

 := F (Y ) (1)

And Y (0) =

y0
y′0
y′′0

 On a bounded interval I. If F is Lipschitz, then the problem admits

a unique solution. Let Y =

y1
y2
y3

 and Ỹ =

ỹ1
ỹ2
ỹ3

 and we compute :

‖ F (Y )− F (Ỹ ) ‖2≤ (y2 − ỹ2)2 + (y3 − ỹ3)2 + 2(f2(x))2(y1 − ỹ2)2 + 2(f0(y1)− f0(ỹ1)2

(Here we used the fact that (a + b)2 ≤ 2a2 + 2b2.)

• If f0 is Lipschitz, ∃L0 ≥ 0 a constant such that ∀y, ỹ, (f0(y)− f0(ỹ))2 ≤ L0(y − ỹ)2

. Then we get :
‖ F (Y )−F (Ỹ ) ‖2≤ 2L0(y− ỹ)2 +(1+2(f2(x)2)(y2− ỹ2)2 +(y3− ỹ3)2 ≤ max(2L0, 1+
2(f2(x))2, 1)∗ ‖ Y − Ỹ ‖2

• Now, if f2 is continuous on bounded I , then for every closed interval I ′ ⊆ I
(which is also bounded). The Cauchy problem admits a unique solution on I ′

. That means that the problem admits a unique solution on I(∀x ∈ I,∃I ′ ⊆
I, closed, such that x ∈ I ′).
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[4.] (II) A unique golbal solution.
f ∈ C1 so f is easily Lipschitz. Hence we have the existence and unicity of local solutions
(on every closed intervalof given length). We can then put together these solutions to get
a global solution, which is unique.

[5.] (4.) y(x) = Ae3x3

You just have to check.

[6.] (2) y0(9) = 3
√

10
(x2 + 9) dy

dx
= xy ⇐⇒ dy

dx
= x

x2+9y ⇐⇒ y(x) = Ae
1
2 ln(x2+9) = A

√
x2 + 9

But y(0) = 3 ⇐⇒ A = 1⇒ y(x) =
√

x2 + 9 hence y(9) =
√

90 = 3
√

10.

[7.](3) y4 = 11
4

(x + 3)y′ = y − 1, y(1) = 2
y′ = 1

x + 3y − 1
x + 3 (2)

1. General solution of the homogeneous equation : y0(x) = Aeln(x+3, A ∈ R

2. We let A vary in terms of x : A→ A(x), y(x) = A(x)(x + 3).
y′(x) = A′(x)(x + 3) + A(x) and we want (2) so
⇒ A′(x)(x + 3) = − 1

x+3 ⇐⇒ A(x) = 1
x+3 + c, c ∈ R.

3. Finally, we find c to obtain y1(1) = 2 where y1(x) = ( 1
x+3 + c)(x + 3) = 1 + c(x + 3)

2 = y1(1) = 1 + 4c ⇐⇒ c = 1
4 .

Hence : y1(x) = 1 + Âăx+3
4 and y1(4) = 11

4

[8.](2) y = e±
√

2x5+c .
We have to change the equation a little bit : y′ = 5x4y

ln(y) ⇐⇒ y′

y
ln(y) = 5x4 ⇐⇒

(ln(y))′ ln(y) = 5x4

Let Y := ln(y) and the system becomes : Y ′Y = 5x4

⇐⇒ (1
2Y )2)′ = 5x4 ⇐⇒ 1

2Y 2 = x5 + c, c ∈ R.
⇐⇒ Y = ±

√
2x5 + c, c ∈ R but we know that y = eY

⇐⇒ y = e±
√

2x5+c.

[9.](1) u = −7 + Ce
1
2 t2+6t

u′ = (6 + t)u + 7t + 42 (3)

1. We solve the homogeneous equation to find the solution u0 : u0(t) = Ae
1
2 t2+6t
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2. We vary the constant A in terms of t : u1(t) = A(t)e 1
2 t2+6t

u′1(t) = A′(t)e 1
2 t2+6t + (6 + t)u1(t)

By (3) : A′(t) = (7t + 42)e− 1
2 t2−6t ⇒ A(t) = −7e−

1
2 t2−6t + c, c ∈ R //

Then we get our answer : u1(t) = −7 + ce
1
2 t2+6t, c ∈ R .
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