Multiple choice test 12 answers

[1.] a. The solution is : $y(t)=\int_{0}^{t} f(x) d x+y_{0} \forall t \in I$.
[2.] b. Recall the counter-example from class : $y^{\prime}=2 \sqrt{|y|}, y_{0}=0$ has 2 solutions on $[-1,1]$, which are $y_{1}(t)=0$ and $y_{2}(t)=t^{2}$
[3.]b. f_{2} continuous and f_{0} Lipschitz.
An equation of order 3 in dimension $1=$ An equation of order 1 in dimension 3 . So we consider $\left(\begin{array}{l}y \\ y^{\prime} \\ y^{\prime \prime}\end{array}\right)$ instead of y.
Let $Y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$ and the equation becomes :

$$
Y^{\prime}=\left(\begin{array}{c}
y_{2} \tag{1}\\
y_{3} \\
y_{3} . f_{2}(x)+f_{0}\left(y_{1}\right)
\end{array}\right):=F(Y)
$$

And $Y(0)=\left(\begin{array}{l}y_{0} \\ y_{0}^{\prime} \\ y_{0}^{\prime \prime}\end{array}\right)$ On a bounded interval I. If F is Lipschitz, then the problem admits a unique solution. Let $Y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$ and $\tilde{Y}=\left(\begin{array}{l}\tilde{y}_{1} \\ \tilde{y}_{2} \\ \tilde{y_{3}}\end{array}\right)$ and we compute : $\|F(Y)-F(\tilde{Y})\|^{2} \leq\left(y_{2}-\tilde{y_{2}}\right)^{2}+\left(y_{3}-\tilde{y_{3}}\right)^{2}+2\left(f_{2}(x)\right)^{2}\left(y_{1}-\tilde{y_{2}}\right)^{2}+2\left(f_{0}\left(y_{1}\right)-f_{0}\left(\tilde{y}_{1}\right)^{2}\right.$ (Here we used the fact that $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$.)

- If f_{0} is Lipschitz, $\exists L_{0} \geq 0$ a constant such that $\forall y, \tilde{y},\left(f_{0}(y)-f_{0}(\tilde{y})\right)^{2} \leq L_{0}(y-\tilde{y})^{2}$. Then we get:
$\|F(Y)-F(\tilde{Y})\|^{2} \leq 2 L_{0}(y-\tilde{y})^{2}+\left(1+2\left(f_{2}(x)^{2}\right)\left(y_{2}-\tilde{y_{2}}\right)^{2}+\left(y_{3}-\tilde{y_{3}}\right)^{2} \leq \max \left(2 L_{0}, 1+\right.\right.$ $\left.2\left(f_{2}(x)\right)^{2}, 1\right) *\|Y-\tilde{Y}\|^{2}$
- Now, if f_{2} is continuous on bounded I, then for every closed interval $I^{\prime} \subseteq I$ (which is also bounded). The Cauchy problem admits a unique solution on I^{\prime} . That means that the problem admits a unique solution on $I\left(\forall x \in I, \exists I^{\prime} \subseteq\right.$ I, closed, such that $\left.x \in I^{\prime}\right)$.
[4.] (II) A unique golbal solution.
$f \in C^{1}$ so f is easily Lipschitz. Hence we have the existence and unicity of local solutions (on every closed intervalof given length). We can then put together these solutions to get a global solution, which is unique.
[5.] (4.) $y(x)=A e^{3 x^{3}}$
You just have to check.
[6.] (2) $y_{0}(9)=3 \sqrt{10}$
$\left(x^{2}+9\right) \frac{d y}{d x}=x y \Longleftrightarrow \frac{d y}{d x}=\frac{x}{x^{2}+9} y \Longleftrightarrow y(x)=A e^{\frac{1}{2} \ln \left(x^{2}+9\right)}=A \sqrt{x^{2}+9}$
But $y(0)=3 \Longleftrightarrow A=1 \Rightarrow y(x)=\sqrt{x^{2}+9}$ hence $y(9)=\sqrt{90}=3 \sqrt{10}$.
[7.](3) $y_{4}=\frac{11}{4}$
$(x+3) y^{\prime}=y-1, \quad y(1)=2$

$$
\begin{equation*}
y^{\prime}=\frac{1}{x+3} y-\frac{1}{x+3} \tag{2}
\end{equation*}
$$

1. General solution of the homogeneous equation : $y_{0}(x)=A e^{\ln (x+3}, A \in \mathbb{R}$
2. We let A vary in terms of $\mathrm{x}: A \rightarrow A(x), y(x)=A(x)(x+3)$.
$y^{\prime}(x)=A^{\prime}(x)(x+3)+A(x)$ and we want (2) so
$\Rightarrow A^{\prime}(x)(x+3)=-\frac{1}{x+3} \Longleftrightarrow A(x)=\frac{1}{x+3}+c, c \in \mathbb{R}$.
3. Finally, we find c to obtain $y_{1}(1)=2$ where $y_{1}(x)=\left(\frac{1}{x+3}+c\right)(x+3)=1+c(x+3)$ $2=y_{1}(1)=1+4 c \Longleftrightarrow c=\frac{1}{4}$.

Hence : $y_{1}(x)=1+\hat{\text { A.a }} \frac{x+3}{4}$ and $y_{1}(4)=\frac{11}{4}$
[8.](2) $y=e^{ \pm \sqrt{2 x^{5}+c}}$.
We have to change the equation a little bit : $y^{\prime}=\frac{5 x^{4} y}{\ln (y)} \Longleftrightarrow \frac{y^{\prime}}{y} \ln (y)=5 x^{4} \Longleftrightarrow$ $(\ln (y))^{\prime} \ln (y)=5 x^{4}$
Let $Y:=\ln (y)$ and the system becomes : $Y^{\prime} Y=5 x^{4}$
$\left.\Longleftrightarrow\left(\frac{1}{2} Y\right)^{2}\right)^{\prime}=5 x^{4} \Longleftrightarrow \frac{1}{2} Y^{2}=x^{5}+c, c \in \mathbb{R}$.
$\Longleftrightarrow Y= \pm \sqrt{2 x^{5}+c}, c \in \mathbb{R}$ but we know that $y=e^{Y}$
$\Longleftrightarrow y=e^{ \pm \sqrt{2 x^{5}+c}}$.
[9.](1) $u=-7+C e^{\frac{1}{2} t^{2}+6 t}$

$$
\begin{equation*}
u^{\prime}=(6+t) u+7 t+42 \tag{3}
\end{equation*}
$$

1. We solve the homogeneous equation to find the solution $u_{0}: u_{0}(t)=A e^{\frac{1}{2} t^{2}+6 t}$
2. We vary the constant A in terms of $\mathrm{t}: u_{1}(t)=A(t) e^{\frac{1}{2} t^{2}+6 t}$

$$
\begin{aligned}
& u_{1}^{\prime}(t)=A^{\prime}(t) e^{\frac{1}{2} t^{2}+6 t}+(6+t) u_{1}(t) \\
& \operatorname{By}(3): A^{\prime}(t)=(7 t+42) e^{-\frac{1}{2} t^{2}-6 t} \Rightarrow A(t)=-7 e^{-\frac{1}{2} t^{2}-6 t}+c, c \in \mathbb{R} / /
\end{aligned}
$$

Then we get our answer : $u_{1}(t)=-7+c e^{\frac{1}{2} t^{2}+6 t}, c \in \mathbb{R}$.

