Multiple Choice Questions 11

1. Let $\mathcal{D}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}-x \leq 0\right\}$.

What is the volume of \mathcal{D} ?
(a) 0 ,
(b) $\frac{\pi}{6}$,
(c) $\frac{\pi}{3}$,
(d) $\frac{2 \pi}{9}$.
2. Using the following substitution :

$$
(x, y)=\left(u^{2}, \frac{v}{u}\right),
$$

compute

$$
\iint_{\mathcal{D}} \frac{\mathrm{d} x \mathrm{~d} y}{(1+x)\left(1+x y^{2}\right)},
$$

where $\mathcal{D}=[0,1]^{2}$. The result is :
(i) $\frac{\pi^{2}}{68}$,
(ii) $\frac{\pi}{16}$,
(iii) $\frac{\pi^{2}}{16}$,
(iv) $\frac{\pi^{2}}{32}$.
3. Compute the double integral

$$
I=\iint_{\mathcal{D}} \frac{y}{x^{2}+1} \mathrm{~d} x \mathrm{~d} y
$$

for

$$
\mathcal{D}=\{(x, y): 0 \leq x \leq 1, \quad 0 \leq y \leq \sqrt{x}\} .
$$

The result is :
(i) $I=\frac{1}{2} \ln (2)$,
(ii) $I=\frac{1}{4} \ln (2)$,
(iii) $I=\frac{1}{2}$,
(iv) $I=1$.
4. What is the volume \mathcal{V} under the graph of the function defined by

$$
f(x, y)=\frac{1}{x+y+3}
$$

over the triangle generated by the lines

$$
x=1, \quad x=7, \quad x+y=4, \quad \text { and } \quad y+3=0,
$$

in the plane $O x y$. The result is :
(i) $V=6+\ln (7)$,
(ii) $V=7+\ln (7)$,
(iii) $V=7-\ln (7)$,
(iv) $V=6-\ln (7)$.
5. Compute the following integral :

$$
I=\iint_{\mathcal{D}}\left\{\left(3 \pi-2 \tan ^{-1}\left(\frac{y}{x}\right)\right\} \mathrm{d} x \mathrm{~d} y\right.
$$

where \mathcal{D} is the first quadrant of the circle of equation $x^{2}+y^{2}=16$. The result is
(i) $\frac{5}{4} \pi$,
(ii) 10π,
(iii) $10 \pi^{2}$,
(iv) $20 \pi^{2}$.
6. Compute the following integral

$$
I=\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} 4 \cos \left(\pi x^{2}+\pi y^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

using polar coordinate. The result is :
(i) $I=1$,
(ii) $I=\frac{2}{\pi}$,
(iii) $I=0$,
(iv) $I=2$.
7. Using cylindric coordinates, compute

$$
I=\iiint_{\mathcal{W}} y \mathrm{~d} V
$$

where \mathcal{W} is the solid over the plane $z=0$, between the cylinders

$$
x^{2}+y^{2}=4 \quad \text { and } \quad x^{2}+y^{2}=6
$$

and under the plane of equation $z=x+3$. The result is :
(i) $I=0$,
(ii) $I=152 \pi$,
(iii) $I=304$,
(iv) $I=304 \pi$.
8. Using spherical coordinates, compute

$$
I=\iiint_{\mathcal{B}}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

where \mathcal{B} is the ball of equation

$$
x^{2}+y^{2}+z^{2} \leq 4
$$

The result is :
(i) $I=32 \pi$,
(ii) $I=\frac{128 \pi}{5}$,
(iii) $I=\frac{32 \pi}{3}$,
(iv) $I=128 \pi$.
9. Find the range of the rectangle

$$
\mathcal{D}=\{(u, v): 0 \leq u \leq 2,0 \leq v \leq 3\}
$$

by the application

$$
\begin{aligned}
\Phi: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
(u, v) & \longmapsto(2 u-3 v, u+2 v) .
\end{aligned}
$$

The result is :
(i) a square,
(ii) a triangle,
(iii) a parallelogram, but not a rectangle,
(iv) a disc.

