Multiple Choice 1

1. When does one have $\partial(E \cup F)=\partial E \cup \partial F$?
(i) $\dot{E} \subset F$
(ii) $\bar{E} \cap \bar{F}=\emptyset$
(iii) $\stackrel{\circ}{E} \cap \stackrel{\circ}{F}=\emptyset$
(iv) $E \cap F=\emptyset$
2. We denote $\|\cdot\|_{2}$ for the Euclidien norm on \mathbb{R}^{n} define the function

$$
\begin{aligned}
N: \mathbb{R}^{n} & \mapsto \mathbb{R} \\
x & \mapsto \frac{\|x\|_{2}}{1+\|x\|_{2}}
\end{aligned}
$$

as well as the function d which, for each pair $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, gives value $N(x-y)$. Which of the following are true?
(i) N is a norm and d is a metric.
(ii) N is a norm but d is not a metric.
(iii) N is not a norm but d is a metric.
(iv) N is not a norm and d is not a metric.
3. We define the set $E=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}<y<x\right\}$. Which of the following statements are true?
(i) E is closed and $\partial E=\{(x, 0): x \in[-1,1]\} \cup\{(x, x): x \in(-1,1)\}$.
(ii) E is closed and open.
(iii) E is open and $\partial E=\{(x, x): x \in[0,1]\} \cup\left\{\left(x, x^{2}\right): x \in[0,1]\right\}$.
(iv) E is open and $\partial E=\emptyset$.
4. We consider a subset E of \mathbb{R}^{n} such that every sequence in E which converges has its limit in E. Which of the following is always true?
(i) E is open and closed
(ii) E is open
(iii) E is closed
(iv) E is neither open nor closed.
5. We define the following subset of $\mathbb{R}^{2}: E=\left\{\left(\frac{1}{n}, e^{-(\log n)^{\frac{3}{2}}}\right), n \in \mathbb{N}^{*}\right\}$. Which of the following statements are true?
(i) E is open and closed
(ii) E is open and but not closed
(iii) E is closed but not open.
(iv) E is neither open nor closed.

