MULTIPLE CHOICE 1

- 1. When does one have $\partial(E \cup F) = \partial E \cup \partial F$?
 - (i) $\mathring{E} \subset F$
 - $(ii) \ \bar{E} \cap \bar{F} = \emptyset$
 - $(iii) \quad \mathring{E} \cap \mathring{F} = \emptyset$
 - $(iv) \ E \cap F = \emptyset$
- 2. We denote $\|\cdot\|_2$ for the Euclidien norm on \mathbb{R}^n define the function

$$N : \mathbb{R}^n \quad \mapsto \quad \mathbb{R}$$
$$x \quad \mapsto \quad \frac{\|x\|_2}{1 + \|x\|_2}$$

as well as the function d which, for each pair $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$, gives value N(x - y). Which of the following are true?

- (i) N is a norm and d is a metric.
- (*ii*) N is a norm but d is not a metric.
- (*iii*) N is not a norm but d is a metric.
- (iv) N is not a norm and d is not a metric.
- 3. We define the set $E = \{(x, y) \in \mathbb{R}^2 : x^2 < y < x\}$. Which of the following statements are true?
 - (i) E is closed and $\partial E = \{(x, 0) : x \in [-1, 1]\} \cup \{(x, x) : x \in (-1, 1)\}.$
 - (ii) E is closed and open.
 - (*iii*) E is open and $\partial E = \{(x, x) : x \in [0, 1]\} \cup \{(x, x^2) : x \in [0, 1]\}.$
 - (*iv*) E is open and $\partial E = \emptyset$.
- 4. We consider a subset E of \mathbb{R}^n such that every sequence in E which converges has its limit in E. Which of the following is always true?
 - (i) E is open and closed
 - (ii) E is open
 - (iii) E is closed
 - (iv) E is neither open nor closed.
- 5. We define the following subset of \mathbb{R}^2 : $E = \left\{ \left(\frac{1}{n}, e^{-(\log n)^{\frac{3}{2}}}\right), n \in \mathbb{N}^* \right\}$. Which of the following statements are true?
 - (i) E is open and closed
 - (ii) E is open and but not closed
 - (iii) E is closed but not open.
 - (iv) E is neither open nor closed.