Multiple Choice Questions 3 : Solutions

1. Answer (iv). Using the chain rule

$$
\frac{\partial}{\partial x} e^{h(x, y, z)}=e^{h(x, y, z)} \frac{\partial h}{\partial x}(x, y, z)=e^{x y^{2} z^{3}} \frac{\partial}{\partial x}\left(x y^{2} z^{3}\right)=e^{x y^{2} z^{3}} y^{2} z^{3} .
$$

By doing the same for y and z, we finally get

$$
(\nabla f)^{T}=e^{x y^{2} z^{3}}\left(y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right) .
$$

2. Answer (iv). The length of the graph of f between a and b is given by

$$
\int_{a}^{b} \sqrt{1+\left|f^{\prime}(t)\right|^{2}} \mathrm{~d} t
$$

Since $f^{\prime}(t)=\left(e^{t / 2}, e^{-t / 2}\right)$,

$$
\left|f^{\prime}(t)\right|^{2}=\frac{e^{2 t}}{2}\left(1+e^{-4 t}\right)
$$

and thus

$$
1+\left|f^{\prime}(t)\right|^{2}=1+\frac{e^{2 t}}{2}\left(1+e^{-4 t}\right)=\frac{e^{2 t}}{2}\left(1+2 e^{-2 t}+e^{-4 t}\right)=\frac{e^{2 t}}{2}\left(1+e^{-2 t}\right)^{2} .
$$

Therefore, the length is given by

$$
\int_{1}^{2} \frac{e^{t}\left(1+e^{-2 t}\right)}{\sqrt{2}} \mathrm{~d} t=\frac{1}{\sqrt{2}}\left(e^{2}-e+e^{-1}-e^{-2}\right) .
$$

3. Answer (i).

$$
D_{x} f=\left\{\begin{array}{ll}
x(2 \ln |x|+1) & x \neq 0 \\
0 & x=0
\end{array} .\right.
$$

Since we can prolonge $x \longmapsto x(2 \ln |x|+1)$ by continuity at 0 , and that $x(2 \ln |x|+1)$ is independent of y, we get $D_{y x} f \equiv 0$. Doing as well for $D_{x y} f$ we get that $D_{x y} f \equiv 0$, and thus (ii), (iii) and (iv) are false and thus (iv) is correct. In fact,

$$
D_{x x} f=\frac{\partial}{\partial x} x(2 \ln |x|+1)=2 \ln |x|+3
$$

that is not continuous at 0 .
4. Answer (ii). Since $\|\cdot\|_{\infty}$ and $\|\cdot\|_{2}$ are equivalent, using $\|\boldsymbol{h}\|_{\infty}$ despite of $\|\boldsymbol{h}\|_{2}$ won't change the result. So

$$
\lim _{\boldsymbol{h} \rightarrow \mathbf{0}} \frac{f(\boldsymbol{h})-f(\mathbf{0})-\langle\boldsymbol{h}, \boldsymbol{t}\rangle}{\|\boldsymbol{h}\|_{2}}=0 \Longleftrightarrow \lim _{\boldsymbol{h} \rightarrow \mathbf{0}} \frac{f(\boldsymbol{h})-f(\mathbf{0})-\langle\boldsymbol{h}, \boldsymbol{t}\rangle}{\|\boldsymbol{h}\|_{\infty}}=0
$$

So it's either (i) or $(i i)$. By the way, if $f \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$ then $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is differentiable. But the converse is false, i.e. f can be differentiable even if $f \notin \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$. For example

$$
f(x, y)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

We have that

$$
\begin{aligned}
\frac{\partial f}{\partial x}(\mathbf{0})=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{x} & =\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0, \\
\frac{\partial f}{\partial y}(\mathbf{0}) & =0
\end{aligned}
$$

and

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{\sqrt{x^{2}+y^{2}}}=0
$$

since

$$
\left|\frac{x^{2} \sin \left(\frac{1}{x}\right)}{\sqrt{x^{2}+y^{2}}}\right| \leq\left|\frac{x^{2} \sin \left(\frac{1}{x}\right)}{\sqrt{x^{2}}}\right|=|x|\left|\sin \left(\frac{1}{x}\right)\right| \underset{(x, y) \rightarrow(0,0)}{\longrightarrow} 0 .
$$

But the $\frac{\partial f}{\partial x}$ is not continuous at 0 . Indeed,

$$
\frac{\partial f}{\partial x}(x, 0)=2 x \sin \left(\frac{1}{x}\right) \cos \left(\frac{1}{x}\right) .
$$

By taking

$$
x_{n}=\frac{1}{2 \pi n} \quad \text { and } \quad y_{n}=\frac{1}{\frac{\pi}{2}+2 \pi n}
$$

we get

$$
\lim _{n \rightarrow \infty} \frac{\partial f}{\partial x}\left(x_{n}, 0\right)=-1 \neq 0=\lim _{n \rightarrow \infty} \frac{\partial f}{\partial x}\left(y_{n}, 0\right) .
$$

Therefore $\frac{\partial f}{\partial x}$ is not continuous and thus f is not \mathcal{C}^{1}.
5. Answer (iv). Observe that $\frac{x^{2}-9 y^{2}}{x^{2}+y^{2}}$ is not defined at $(0,0)$. Therefore, its domain is $\mathbb{R}^{2} \backslash\{(0,0)\}$. Let consider first $f(x, 0)$ for $x \neq 0$. We have that $f(x, 0)=1$ for all $x \neq 0$, and thus

$$
f\left(\frac{1}{n}, 0\right)=1
$$

On the other hand, $f(0, y)=-9$ for all $y \neq 0$, and thus

$$
\lim _{n \rightarrow \infty} f\left(0, \frac{1}{n}\right)=-9
$$

Therefore, $x_{n}=\left(\frac{1}{n}, 0\right)$ and $y_{n}=\left(0, \frac{1}{n}\right)$ define to sequences that converge to 0 but such that

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right) .
$$

Therefore, the limit at 0 doesn't exist.
6. Answer (iv).

$$
\lim _{y \rightarrow 0^{+}} f(1, y)=\lim _{y \rightarrow 0} \frac{1}{y}
$$

doesn't exist. Therefore f is not continuous at $(1,0)$, and in particular neither differentiable.
7. Answer (iii). Since $f^{\prime}(1 / 2)=g^{\prime}(1 / 4)=0$, neither f nor g are regular. But

$$
h^{\prime}(t)=\left(-8\left(t-\frac{1}{2}\right),-2\left(t-\frac{1}{2}\right)\right) \neq 0
$$

for all t, therefore h is regular.
8. Answer (i). We have that f is continuous over $\mathbb{R}^{2} \backslash\{(x, x) \mid x \in \mathbb{R}\}$. Let show that f is also continuous over $\{(x, x) \mid x \in \mathbb{R}\}$. We have that
$\lim _{y \rightarrow x} \frac{x e^{x}-y e^{y}}{x-y}=\lim _{y \rightarrow x} \frac{x e^{x}-y e^{x}+y e^{x}-y e^{y}}{x-y} \underset{(*)}{=} e^{x}+\lim _{y \rightarrow x} y \frac{e^{y}-e^{x}}{y-x}=e^{x}+x e^{x}=(x+1) e^{x}$.
We used the fact that

$$
\lim _{y \rightarrow x} \frac{e^{y}-e^{x}}{y-x}=\left.\frac{d}{d y} e^{y}\right|_{y=x} .
$$

