Multiple Choice Questions 2: Solutions

1. Answer (iv). The line and the circle intersect at $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, and thus, we have to find the tangent vector on the point for each curve. For the line, the slope is given by $v_{1}=\left(1,-\frac{2}{\sqrt{3}}\right)$. For the circle, we derivate the fonction

$$
\begin{aligned}
f:[0,1] & \longrightarrow \mathbb{R} \\
x & \longmapsto \sqrt{1-x^{2}}
\end{aligned}
$$

and compute $f^{\prime}(1 / 2)=-\frac{1}{\sqrt{3}}$. Therefore $v_{2}=\left(-1, \frac{1}{\sqrt{3}}\right)$ and thus

$$
\cos (\theta)=\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|\left\|v_{2}\right\|}=\frac{5}{\sqrt{28}} .
$$

Notice that to get v_{2} we could also have parametrized the circle as $\varphi(\theta)=(\cos \theta, \sin \theta)$ for $\theta \in\left[0,2 \pi\left[\right.\right.$ and compute $\dot{\gamma}\left(\frac{\pi}{3}\right)$ (since the circle and the line intersect when $\theta=\frac{\pi}{3}$).
2. Answer (iii). The "if" has to be understood as an "if" of a definition, i.e. as an "if and only if".
(i) Counter-example : any periodic function (for example $x \longmapsto \cos (x)$)
(ii) Counter-example :

$$
f(x)= \begin{cases}1 & x \in\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}^{*}\right\} \cup\{0\} \\ 0 & \text { otherwise } .\end{cases}
$$

The function f is obviously not continuous at 0 and we have that

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=f(0)=1
$$

(iii) The property is equivalent to: if $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge to x_{0}, then $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$. We can prove the result using the definition of continuity of f. Indeed, let $\varepsilon>0$. since f is continuous at x_{0}, there is $\delta>0$ s.t. $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ whenever $\left|x-x_{0}\right|<\delta$. Since $x_{n} \rightarrow x_{0}$, there is $N \in \mathbb{N}$ s.t. $\left|x_{n}-x_{0}\right|<\delta$ whenever $n \geq N$. Therefore, if $n \geq N$, we have that $\left|x_{n}-x_{0}\right|<\delta$, and thus $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|<\varepsilon$. We conclude that $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.
(iv) Counter-example : Let

$$
f(x)= \begin{cases}\frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

We will now prove that if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence that converge to 0 and such that $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converge, then there is $N \in \mathbb{N}$ s.t. $x_{n}=0$ for all $n \geq N$ (and thus, the property of the statement will by verified, but f is not continuous).

Suppose by contradiction that $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge to 0 such that $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converge, but that for all $N \in \mathbb{N}$, there is $n \geq N$ s.t. $x_{n} \neq 0$. Let $M>0$. Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ converge, there is $N_{M} \in \mathbb{N}$ s.t. $\left|x_{n}\right|<\frac{1}{M}$ for all $n \geq N_{M}$. However, by our assumption, there is $n_{N_{M}} \geq N_{M}$ s.t. $x_{n_{N_{M}}} \neq 0$, and thus $\left|f\left(x_{n_{N_{M}}}\right)\right|=\frac{1}{\left|x_{n_{N_{M}}}\right|}>M$. We have proved that

$$
\forall M>0, \exists n_{M} \in \mathbb{N}:\left|f\left(x_{n_{M}}\right)\right|>M
$$

i.e. that

$$
\lim _{M \rightarrow \infty} x_{n_{M}}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} f\left(x_{n_{M}}\right)=+\infty
$$

what contradict the fact that $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converge. The claim follow.
3. Answer (ii). For the first assertion, recall that $\|f\|_{\infty}=\max _{y \in[0,1]}|f(y)|$. The function F_{1} is a linear operator, so to prove the continuity over $\mathcal{C}([0,1])$, it's enough to prove the continuity at 0 (why ?). We have that

$$
\left|F_{1}(f)\right| \leq \int_{0}^{1}|f(x)| \mathrm{d} x \leq \int_{0}^{1}\|f\|_{\infty} \mathrm{d} x=\|f\|_{\infty}
$$

and thus, if $\varepsilon>0$ and $\delta=\varepsilon$, we have that

$$
\|f\|_{\infty}<\delta \Longrightarrow\left|F_{1}(f)\right|<\varepsilon
$$

what prove the claim. For the second one, let $f \equiv 1$ on $[0,1]$. For all n, set

$$
g_{n}(x)= \begin{cases}1 & x \in\left[0,1-\frac{1}{n}\right. \\ n(1-x) & x \in\left[1-\frac{1}{n}, 1\right]\end{cases}
$$

so that $g_{n}(1)=0$ for all $n \in \mathbb{N}^{*}$. Therefore, for all $n \in \mathbb{N}^{*}$,

$$
\left|F_{2}(f)-F_{2}\left(g_{n}\right)\right|=1
$$

However,

$$
\left\|f-g_{n}\right\|_{2}^{2}=\int_{1-\frac{1}{n}}^{1}(1-n(1-x)) \mathrm{d} x \underset{x=1-u}{=} \int_{0}^{\frac{1}{n}}(1-n u)^{2} \mathrm{~d} u=\frac{1}{3 n} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

To conclude, we found a sequence $\left(g_{n}\right)_{n \in \mathbb{N}^{*}}$ that converge to f but such that $\left(F_{2}\left(g_{n}\right)\right)_{n \in \mathbb{N}}$ doesn't converge to $F_{2}(f)$. Therefore F_{2} is not continuous.
4. Remark that $f_{1}(1)=f_{2}(1)$ and thus, both cuves intersects at $t=1$. We have

$$
\begin{aligned}
f_{1}^{\prime}(t) & =(1,2,2 t) \\
f_{2}^{\prime}(t) & =\left(0,-1,3 t^{2}\right)
\end{aligned}
$$

there value at $t=1$ gives the tangent vectors of both curves at the intersection point : $v_{1}=(1,2,2)$ and $v_{2}=(0,-1,3)$. We can conclude that

$$
\cos (\theta)=\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|\left\|v_{2}\right\|}=\frac{4}{3 \sqrt{10}}
$$

5. Answer (iii). Recall that a set is complete is all Cauchy sequence of E converge in E (i.e. the limit is also in E).

For the first assertion, let

$$
f(x)= \begin{cases}0 & x \in[0,1) \\ 1 & x=1,\end{cases}
$$

and for all $n \in \mathbb{N}^{*}$, let define

$$
g_{n}(x)=x^{n}, \quad x \in[0,1] .
$$

For all $m, n \in \mathbb{N}$ s.t. $1 \leq n \leq m$, we have

$$
\left\|g_{m}-g_{n}\right\|_{4}^{4}=\int_{0}^{1}\left(x^{n}-x^{m}\right)^{4} \mathrm{~d} x \leq \int_{0}^{1} x^{4 n} \mathrm{~d} x=\frac{1}{4 n} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

and thus $\left(g_{n}\right)_{n \in \mathbb{N}^{*}}$ is a Cauchy sequence. Moreover $\left(g_{n}\right)_{n \in \mathbb{N}^{*}}$

$$
\left\|g_{n}-f\right\|_{4}^{4}=\int_{0}^{1} x^{4 n} \mathrm{~d} x=\frac{1}{4 n} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

and thus $\left(g_{n}\right)_{n \in \mathbb{N}^{*}}$ is a Cauchy sequence of E that converge to the function f which is not in E (since it's not continuous). Therefore E is not complete.
For the second one, let define a Cauchy sequence of E by $x_{n}=\left(u_{n}, v_{n}\right)$, i.e. $u_{n}^{2}+v_{n}^{2} \leq$ 1. In particular, $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are both in \mathbb{R} that is complete. Therefore, they both converge in \mathbb{R}. Let denote u and v there respective limits. Then we have that

$$
1 \geq \lim _{n \rightarrow \infty}\left(u_{n}^{2}+v_{n}^{2}\right)=u^{2}+v^{2}
$$

and thus

$$
x_{n}=\left(u_{n}, v_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow}(u, v) \in E .
$$

We have proved that all Cauchy sequence of E converge in E. Therefore E is complete.
6. Answer (iv). For the first assertion, the derivative of the curve is given by

$$
f^{\prime}(t)=(2 \sin (t) \cos (t),-2 \sin (t) \cos (t))
$$

Since $f^{\prime}(0)=f^{\prime}(\pi / 2)=f^{\prime}(\pi)=0$, the curve is not regular. For the second one, the curve is not continuous.
7. Answer (i). Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ a sequence that converge to x s.t. $y_{n} \neq x$ for all n. Since f is bounded, the sequence $\left(f\left(y_{n}\right)\right)_{n \in \mathbb{N}}$ is bounded, and thus, there is a subsequence that converge. Let $\left(f\left(y_{n_{k}}\right)\right)_{k \in \mathbb{N}}$ such a sequence, and let set $x_{k}=y_{n_{k}}$. Let denote y the limit of $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$. Then we have that

$$
x_{n} \longrightarrow x \text { and } f\left(x_{n}\right) \longrightarrow y,
$$

what prove the claim.

