Multiple Choice Questions 2 : Solutions

1. Answer (iv). The line and the circle intersect at $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, and thus, we have to find the tangent vector on the point for each curve. For the line, the slope is given by $v_1 = \left(1, -\frac{2}{\sqrt{3}}\right)$. For the circle, we derivate the fonction

$$f: [0,1] \longrightarrow \mathbb{R}$$
$$x \longmapsto \sqrt{1-x^2}$$

and compute $f'(1/2) = -\frac{1}{\sqrt{3}}$. Therefore $v_2 = \left(-1, \frac{1}{\sqrt{3}}\right)$ and thus

$$\cos(\theta) = \frac{\langle v_1, v_2 \rangle}{\|v_1\| \|v_2\|} = \frac{5}{\sqrt{28}}.$$

Notice that to get v_2 we could also have parametrized the circle as $\varphi(\theta) = (\cos \theta, \sin \theta)$ for $\theta \in [0, 2\pi[$ and compute $\dot{\gamma}(\frac{\pi}{3})$ (since the circle and the line intersect when $\theta = \frac{\pi}{3}$).

- **2.** Answer (*iii*). The "if" has to be understood as an "if" of a definition, i.e. as an "if and only if".
 - (i) Counter-example: any periodic function (for example $x \mapsto \cos(x)$)
 - (ii) Counter-example:

$$f(x) = \begin{cases} 1 & x \in \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cup \{0\} \\ 0 & \text{otherwise.} \end{cases}$$

The function f is obviously not continuous at 0 and we have that

$$\lim_{n \to \infty} f\left(\frac{1}{n}\right) = f(0) = 1.$$

- (iii) The property is equivalent to: $if(x_n)_{n\in\mathbb{N}}$ converge to x_0 , then $f(x_n)\to f(x_0)$. We can prove the result using the definition of continuity of f. Indeed, let $\varepsilon>0$. since f is continuous at x_0 , there is $\delta>0$ s.t. $|f(x)-f(x_0)|<\varepsilon$ whenever $|x-x_0|<\delta$. Since $x_n\to x_0$, there is $N\in\mathbb{N}$ s.t. $|x_n-x_0|<\delta$ whenever $n\geq N$. Therefore, if $n\geq N$, we have that $|x_n-x_0|<\delta$, and thus $|f(x_n)-f(x_0)|<\varepsilon$. We conclude that $f(x_n)\to f(x_0)$.
- (iv) Counter-example: Let

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0\\ 0 & x = 0. \end{cases}$$

We will now prove that if $(x_n)_{n\in\mathbb{N}}$ is a sequence that converge to 0 and such that $(f(x_n))_{n\in\mathbb{N}}$ converge, then there is $N\in\mathbb{N}$ s.t. $x_n=0$ for all $n\geq N$ (and thus, the property of the statement will by verified, but f is not continuous).

Suppose by contradiction that $(x_n)_{n\in\mathbb{N}}$ converge to 0 such that $\left(f(x_n)\right)_{n\in\mathbb{N}}$ converge, but that for all $N\in\mathbb{N}$, there is $n\geq N$ s.t. $x_n\neq 0$. Let M>0. Since $(x_n)_{n\in\mathbb{N}}$ converge, there is $N_M\in\mathbb{N}$ s.t. $|x_n|<\frac{1}{M}$ for all $n\geq N_M$. However, by our assumption, there is $n_{N_M}\geq N_M$ s.t. $x_{n_{N_M}}\neq 0$, and thus $|f(x_{n_{N_M}})|=\frac{1}{|x_{n_{N_M}}|}>M$. We have proved that

$$\forall M > 0, \exists n_M \in \mathbb{N} : |f(x_{n_M})| > M,$$

i.e. that

$$\lim_{M \to \infty} x_{n_M} = 0 \quad \text{and} \quad \lim_{n \to \infty} f(x_{n_M}) = +\infty,$$

what contradict the fact that $(f(x_n))_{n\in\mathbb{N}}$ converge. The claim follow.

3. Answer (ii). For the first assertion, recall that $||f||_{\infty} = \max_{y \in [0,1]} |f(y)|$. The function F_1 is a linear operator, so to prove the continuity over $\mathcal{C}([0,1])$, it's enough to prove the continuity at 0 (why?). We have that

$$|F_1(f)| \le \int_0^1 |f(x)| dx \le \int_0^1 ||f||_{\infty} dx = ||f||_{\infty},$$

and thus, if $\varepsilon > 0$ and $\delta = \varepsilon$, we have that

$$||f||_{\infty} < \delta \implies |F_1(f)| < \varepsilon,$$

what prove the claim. For the second one, let $f \equiv 1$ on [0,1]. For all n, set

$$g_n(x) = \begin{cases} 1 & x \in \left[0, 1 - \frac{1}{n}\right] \\ n(1 - x) & x \in \left[1 - \frac{1}{n}, 1\right], \end{cases}$$

so that $g_n(1) = 0$ for all $n \in \mathbb{N}^*$. Therefore, for all $n \in \mathbb{N}^*$,

$$|F_2(f) - F_2(g_n)| = 1.$$

However,

$$||f - g_n||_2^2 = \int_{1 - \frac{1}{n}}^1 \left(1 - n(1 - x) \right) dx = \int_0^{\frac{1}{n}} (1 - nu)^2 du = \frac{1}{3n} \xrightarrow[n \to \infty]{} 0.$$

To conclude, we found a sequence $(g_n)_{n\in\mathbb{N}^*}$ that converge to f but such that $(F_2(g_n))_{n\in\mathbb{N}}$ doesn't converge to $F_2(f)$. Therefore F_2 is not continuous.

4. Remark that $f_1(1) = f_2(1)$ and thus, both cuves intersects at t = 1. We have

$$f_1'(t) = (1, 2, 2t)$$

$$f_2'(t) = (0, -1, 3t^2),$$

there value at t = 1 gives the tangent vectors of both curves at the intersection point: $v_1 = (1, 2, 2)$ and $v_2 = (0, -1, 3)$. We can conclude that

$$\cos(\theta) = \frac{\langle v_1, v_2 \rangle}{\|v_1\| \|v_2\|} = \frac{4}{3\sqrt{10}}.$$

5. Answer (iii). Recall that a set is complete is all Cauchy sequence of E converge in E (i.e. the limit is also in E).

For the first assertion, let

$$f(x) = \begin{cases} 0 & x \in [0, 1) \\ 1 & x = 1, \end{cases}$$

and for all $n \in \mathbb{N}^*$, let define

$$g_n(x) = x^n, \quad x \in [0, 1].$$

For all $m, n \in \mathbb{N}$ s.t. $1 \le n \le m$, we have

$$||g_m - g_n||_4^4 = \int_0^1 (x^n - x^m)^4 dx \le \int_0^1 x^{4n} dx = \frac{1}{4n} \underset{n \to \infty}{\longrightarrow} 0,$$

and thus $(g_n)_{n\in\mathbb{N}^*}$ is a Cauchy sequence. Moreover $(g_n)_{n\in\mathbb{N}^*}$

$$||g_n - f||_4^4 = \int_0^1 x^{4n} dx = \frac{1}{4n} \underset{n \to \infty}{\longrightarrow} 0,$$

and thus $(g_n)_{n\in\mathbb{N}^*}$ is a Cauchy sequence of E that converge to the function f which is not in E (since it's not continuous). Therefore E is not complete.

For the second one, let define a Cauchy sequence of E by $x_n = (u_n, v_n)$, i.e. $u_n^2 + v_n^2 \le 1$. In particular, $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are both in \mathbb{R} that is complete. Therefore, they both converge in \mathbb{R} . Let denote u and v there respective limits. Then we have that

$$1 \ge \lim_{n \to \infty} (u_n^2 + v_n^2) = u^2 + v^2,$$

and thus

$$x_n = (u_n, v_n) \underset{n \to \infty}{\longrightarrow} (u, v) \in E.$$

We have proved that all Cauchy sequence of E converge in E. Therefore E is complete.

6. Answer (iv). For the first assertion, the derivative of the curve is given by

$$f'(t) = (2\sin(t)\cos(t), -2\sin(t)\cos(t)).$$

Since $f'(0) = f'(\pi/2) = f'(\pi) = 0$, the curve is not regular. For the second one, the curve is not continuous.

7. Answer (i). Let $(y_n)_{n\in\mathbb{N}}$ a sequence that converge to x s.t. $y_n \neq x$ for all n. Since f is bounded, the sequence $(f(y_n))_{n\in\mathbb{N}}$ is bounded, and thus, there is a subsequence that converge. Let $(f(y_{n_k}))_{k\in\mathbb{N}}$ such a sequence, and let set $x_k = y_{n_k}$. Let denote y the limit of $(f(x_n))_{n\in\mathbb{N}}$. Then we have that

$$x_n \longrightarrow x$$
 and $f(x_n) \longrightarrow y$,

what prove the claim.