1. (i) False : Take $\left.E=E^{\circ}=\right] 0, \frac{1}{2}\left[\right.$ and $F=[0,1]$. We have that $\frac{1}{2} \in \partial E$ but

$$
\frac{1}{2} \notin \partial(E \cup F)=\partial[0,1]=\{0,1\} .
$$

(ii) True : If $x \in \partial(E \cup F)$, then by definition

$$
\forall r>0, \mathcal{B}(x, r) \cap(E \cup F)^{c} \neq \emptyset \quad \text { and } \quad \mathcal{B}(x, r) \cap(E \cup F) \neq \emptyset .
$$

Therefore either for E or F (let say E), we have

$$
\forall r>0, \mathcal{B}(x, r) \cap(E \cup F)^{c} \neq \emptyset \quad \text { and } \quad \mathcal{B}(x, r) \cap E \neq \emptyset
$$

Since $E^{c} \supset(E \cup F)^{c}$,

$$
\forall r>0, \mathcal{B}(x, r) \cap E^{c} \neq \emptyset \quad \text { and } \quad \mathcal{B}(x, r) \cap E \neq \emptyset
$$

we finally get that $x \in \partial E$, and thus that $\partial(E \cup F) \subset \partial E \cup \partial F$. Conversely, let $x \in \partial E \cup F$. Therefore either $x \in \partial E$ or $x \in \partial F$, let say without loss of generality that $x \in \partial E$. We have that $\partial E \subset \bar{E}$ and $\bar{E} \cap \bar{F}=\emptyset$, therefore $x \in \bar{F}^{c}$. Since \bar{F} is closed, \bar{F}^{c} is open and thus,

$$
\exists r_{0}>0: \forall r \leq r_{0}, \mathcal{B}(x, r) \subset \mathcal{B}\left(x, r_{0}\right) \subset \bar{F}^{c}
$$

Therefore, for all $r \leq r_{0}$,

$$
\mathcal{B}(x, r) \cap E \neq \emptyset, \quad \mathcal{B}(x, r) \cap E^{c} \neq \emptyset, \quad \mathcal{B}(x, r) \cap F=\emptyset \quad \text { and } \quad \mathcal{B}(x, r) \subset F^{c} .
$$

Therefore, for all $r \leq r_{0}$,

$$
\mathcal{B}(x, r) \cap E \neq \emptyset \quad \text { and } \quad \mathcal{B}(x, r) \cap(E \cup F)^{c} \neq \emptyset
$$

and thus

$$
\mathcal{B}(x, r) \cap(E \cup F) \neq \emptyset \quad \text { and } \quad \mathcal{B}(x, r) \cap(E \cup F)^{c} \neq \emptyset
$$

what prove that $x \in \partial(E \cup F)$.
(iii) False : Let $E=] 0,1[$ and $F=[1,2]$. We have that $1 \in \partial E$, but

$$
\partial(E \cup F)=\partial] 0,1]=\{0,2\},
$$

while

$$
\left.E^{\circ} \cap F^{\circ}=\right] 0,1[\cap] 1,2[=\emptyset
$$

(iv) False : same counter-example as (iii).
2. \mathcal{N} is not a norm since

$$
\mathcal{N}(2 x)=\frac{\|2 x\|_{2}}{1+\|2 x\|_{2}}=\frac{2\|x\|_{2}}{1+2\|x\|_{2}}<2 \cdot \frac{\|x\|_{2}}{1+\|x\|_{2}}=2 \mathcal{N}(x),
$$

and thus the homogeneity is not valid. On the other hand, d is indeed a distance. the fact that $d(x, y)>0$ for all $x \neq y$ and $d(x, x)=0$ is clear. Let show the triangle inequality. First, let observe that

$$
t \longmapsto \frac{t}{1+t}
$$

is increasing on $[0, \infty)$. Also, we see that for $u, v \geq 0$,

$$
\begin{aligned}
\frac{u}{1+u}+\frac{v}{1+v}-\frac{u+v}{1+u+v} & =\frac{u(1+v)}{(1+u)(1+v)}+\frac{v(1+u)}{(1+v)(1+u)}-\frac{u+v}{1+u+v} \\
& =\frac{u+v+2 u v}{1+u+v+u v}-\frac{u+v}{1+u+v} \\
& =\frac{u v(u+v+2)}{(1+u+v)^{2}+(1+u+v) u v} \geq 0
\end{aligned}
$$

and thus

$$
\begin{equation*}
\frac{u+v}{1+u+v} \leq \frac{u}{1+u}+\frac{v}{1+v}, \tag{1}
\end{equation*}
$$

for all $u, v \geq 0$. Using the fact that $\|\cdot\|_{2}$ is a norm, we get that

$$
\|x-z\|_{2} \leq\|x-y\|_{2}+\|y-z\|_{2},
$$

and thus, if $x, y, z \in \mathbb{R}$,

$$
\begin{gathered}
d(x, z)=\mathcal{N}(x-z)=\frac{\|x-z\|_{2}}{1+\|x-z\|_{2}} \leq \frac{\|x-y\|_{2}+\|y-z\|_{2}}{1+\|x-y\|_{2}+\|y-z\|_{2}} \\
\leq \frac{\|x-y\|_{2}}{1+\|x-y\|_{2}}+\frac{\|y-z\|_{2}}{1+\|y-z\|_{2}}=\mathcal{N}(x-y)+\mathcal{N}(y-z)=d(x, y)+d(y, z),
\end{gathered}
$$

where the first inequality come from the fact that $t \longmapsto \frac{t}{1+t}$ is increasing. The claim follow.
3. (i) False : E is not closed. Indeed, let consider the sequence defined by $x_{n}=$ $\left(\frac{1}{n}, \frac{1}{n^{3 / 2}}\right)$. Then $\left(x_{n}\right)$ is a sequence of E. Moreover we have that

$$
\lim _{n \rightarrow \infty} x_{n}=(0,0) \notin E,
$$

and thus E is not closed.
(ii) False : since E is not closed.
(iii) True : Let show that E^{c} is closed. Remark that

$$
\left.\left.E^{c}=\left\{(x, y) \mid y \leq x^{2} \text { or } y \geq x\right\} \cup(]-\infty, 0\right] \times \mathbb{R}\right) \cup([1,+\infty[\times \mathbb{R}) .
$$

Since $]-\infty, 0] \times \mathbb{R}$ and $[1,+\infty[\times \mathbb{R}$ are closed, we just have to show that

$$
\left\{(x, y) \mid x \in[0,1] \text { and }\left(y \leq x^{2} \text { or } y \geq x\right)\right\}
$$

is closed (because a finite union of closed is closed). Let $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ a convergent sequence of E. Let denote (a, b) the limit. If the limit is $(0,0)$ or $(1,1)$ then we are done. So we suppose $(a, b) \notin\{(0,0),(1,1)\}$. Let

$$
A=\left\{n \mid y_{n} \leq x_{n}^{2}\right\}:=\left\{n_{k}\right\}_{k \in \mathbb{N}} \quad \text { and } \quad B=\left\{n \mid y_{n} \geq x_{n}\right\}:=\left\{m_{k}\right\}_{k \in \mathbb{N}} .
$$

We necessarily have that $|A|$ or $|B|$ is finite. Indeed, if both where non-finite, then

$$
b=\lim _{k \rightarrow \infty} y_{n_{k}} \leq \lim _{k \rightarrow \infty} x_{n_{k}}^{2}=a^{2}
$$

and

$$
b=\lim _{k \rightarrow \infty} y_{m_{k}} \geq \lim _{k \rightarrow \infty} x_{n_{k}}=a,
$$

and thus $a \leq b \leq a^{2}$. Since $a \in[0,1]$ we have that $a^{2} \leq a$ and thus we get $a=a^{2}=b$ what implies that $(a, b)=(0,0)$ or $(a, b)=(1,1)$ which is impossible by our assumption on (a, b). Suppose without loss of generality that A is finite and B is non finite. In particular, there is $k \in \mathbb{N}$ such that $n \in B$ for all $n \geq k$. Therefore, $x_{n} \leq y_{n}$ for all $n \geq k$ and thus

$$
a=\lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty} y_{n}=b .
$$

In particular $(a, b) \in E$, and thus E is closed. Let show that

$$
\partial E=\{(x, x) \mid x \in[0,1]\} \cup\left\{\left(x, x^{2}\right) \mid x \in[0,1]\right\} .
$$

The fact that $\partial E \subset\{(x, x) \mid x \in[0,1]\} \cup\left\{\left(x, x^{2}\right) \mid x \in[0,1]\right\}$ is obvious, and thus, we just have to show the converse inclusion. Also, the fact that $(0,0)$ and $(1,1)$ are in ∂E is obvious. Let $x \in] 0,1\left[\right.$ and consider the ball $\mathcal{B}\left((x, x), \frac{1}{n}\right)$ with $\frac{1}{n}$ small enough to have $x-\frac{1}{n}>x^{2}$. In particular if $m>n$, we have that $\left(x, x-\frac{1}{m}\right) \in E$ and $\left(x, x+\frac{1}{m}\right) \in E^{c}$. Therefore

$$
\forall n \in \mathbb{N}, \mathcal{B}\left((x, x), \frac{1}{n}\right) \cap E \neq \emptyset \quad \text { and } \quad \mathcal{B}\left((x, x), \frac{1}{n}\right) \cap E^{c} \neq \emptyset .
$$

Therefore $(x, x) \in \partial E$. Let $x \in] 0,1[$, we consider n big enough to have $x^{2}+\frac{1}{n}<x$. Take $m>n$ and show that $\left(x, x^{2}+\frac{1}{m}\right) \in E$ and $\left(x, x^{2}-\frac{1}{m}\right) \in E^{c}$ what will prove the claim (to see things better, make a draw !).
4. (i) False : Take $E=[0,1]$.
(ii) False : Take $E=[0,1]$.
(iii) True : Let show that E^{c} is open. Suppose by contradiction that it's not open. So there is an $x \in E^{c}$ such that for all n,

$$
\mathcal{B}\left(x, \frac{1}{n}\right) \cap E \neq \emptyset .
$$

So let $x_{n} \in \mathcal{B}\left(x, \frac{1}{n}\right) \cap E$ for all n. In particular, $\left(x_{n}\right)$ is a sequence of E that converge to x, and by assumption it converge in E. Therefore $x \in E$ which is a contradiction with $x \in E^{c}$. Therefore E^{c} is open, and thus E is closed.
(iv) False : Take $E=\mathbb{R}^{n}$.
5. (i) False : Since E is countable, it can't contain any ball. Therefore it's not open.
(ii) False : Same reason as previously.
(iii) False : Since $\lim _{n \rightarrow \infty}\left(\frac{1}{n}, e^{-(\log (n))^{3 / 2}}\right)=(0,0) \notin E$, it can't be closed.
(iv) True.

