
Chapter 1

The Euclidean space Rn

The set Rn is defined as the set of all ordered n-tuples (x1,.....,xn) of
real numbers. These n-tuples are called points of Rn. We can also see Rn as a
vector space of dimension n. In this chapter we will first talk about the algebraic
structure of Rn. Next we will introduce a topological structure that shall allow
us to extend the concept of limits to Rn. We can find these basic structures
in more abstract spaces such as normed spaces or metric spaces which we will
briefly introduce.

1.1 The vector space Rn

Notation. We can represent elements of the vector space Rn as column vec-
tors with n entries instead of ordered n-tuples. We write:

x =


x1
·
·
·
xn


Or x with an arrow above x = ~x. There is a unique column vector corresponding
to an n-tuple and vice versa. We will generally use column vectors to denote
elements of Rn in calculations. For the text to be clear we will use the two other
notations for the parameters of functions defined on Rn.

Vector space. The set Rn can be considered as a vector space equipped with
addition:

x + y =


x1
·
·
·
xn

+


y1
·
·
·
yn

 =


x1 + y1
·
·
·

xn + yn
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and the mutliplication by a scalar λ ∈ R defined as

λx = λ


x1
·
·
·
xn

 =


λx1
·
·
·

λxn


Scalar product. The vector space Rn is also equipped with a scalar product
〈·, ·〉 : Rn × Rn −→ R defined as

〈x,y〉 =

n∑
k=1

xkyk.

A scalar product satisfies the three following properties:

1. Positive-definiteness: 〈x,x〉 ≥ 0 for all x and 〈x,x〉 = 0⇔ x = 0

2. Symmetry: 〈x,y〉 = 〈y,x〉

3. Linear in each argument: 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x,y, z ∈
Rn and α, β ∈ R

In linear algebra a vector x is also an n × 1 matrix. Its transpose, written
xT = (x1, ..., xn), is therefore a 1 × n matrix, and we can interpret the scalar
product of two vectors x,y as the matrix product of xT and y:

〈x,y〉 = xTy = (x1, . . . , xn) ·


y1
·
·
·
yn

 .

Dimension of Rn. The vectors

e1 =


1
0
·
·
0

 , . . . , ek =


0
·
1
·
0

 , . . . , en =


0
·
·
0
1


form an orthonormal basis for Rn and

x =

n∑
k=1

xkek

for all x ∈ Rn with xk = 〈x, ek〉 ∈ R. Thus,

dimRn = n <∞.

We say that Rn is a Euclidean vector space of dimension n. Every real vector
space of dimension n can be identified to Rn.
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OTHER VECTOR SPACES

Euclidean spaces of infinite dimension. The set l2(R) is the set of numer-

ical sequences (xk)k∈N such that

∞∑
k=0

x2k <∞. It is a vector space equipped with

the addition (xk)k∈N + (yk)k∈N = (xk + yk)k∈N. We define a scalar product by

〈(xk)k∈N, (yk)k∈N〉 =

∞∑
k=0

xkyk.

It is easier to represent the sequences as vectors in ”R∞”. We can write

〈x,y〉 =

∞∑
k=0

xkyk.

The set C([a, b]) of continuous functions f : [a, b] −→ R is a vector space and
we can define a scalar product on C([a, b]) as

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

The complex vector space Cn. The space Cn is the set of all complex
vectors x equipped with the usual addition and the scalar multiplication by
complex numbers. It is a complex vector space (this means it is a vector space
over the field C). We can define a scalar product by

〈x,y〉 =

n∑
k=1

x̄kyk. (1.1)

In particular, this scalar product is linear in its second argument and anti-linear
in the first argument. In addition, for all x,y ∈ Cn

〈x,y〉 = 〈y,x〉.

The vectors ek, k = 1 . . . n, form an orthonormal basis. We say that the space
Cn is a Hermitian space of dimension n. In quantum mechanics the spin state
of a particle of spin s is represented by a vector in C2s+1.

The real vector space Cn. A Hermitian space is always a Euclidean space
if multiplication is restricted to real numbers. We take the scalar product

〈x,y〉R = Re(〈x,y〉) = Re
( n∑
k=1

x̄kyk
)
. (1.2)

The vectors ek, iek, k = 1 . . . n, form an orthonormal basis in relation to this
scalar product. Consequently, the real vector space Cn is of dimension 2n.
Therefore we can identify Cn with the Euclidean space R2n.
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1.2 The normed space Rn

To be able to extend the analytical methods presented in Analysis I to the
space Rn, it has to be provided with a topological structure. On the field R
we used the absolute value to define a distance d(x, y) = |x − y|. We have
defined the convergence and the continuity in R with this distance d. We seek
to generalize the absolute value and the distance to the space Rn. To do that
we will introduce the concepts of norm and a metric.

Definition - norm and normed space. Let E be a real vector space. A
function || · || : E −→ R+ is called a norm on E if || · || verifies the three following
properties:

1. Positive-definiteness: ||x|| ≥ 0 for all x ∈ E and ||x|| = 0⇔ x = 0

2. Homogeneity: ||λ · x|| = |λ| · ||x|| for all λ ∈ R and x ∈ E

3. Triangle inequality: ||x + y|| ≤ ||x||+ ||y|| for all x,y ∈ E

The couple (E, || · ||) is called a normed space.

The Euclidean norm on Rn. The function || · ||2 : Rn −→ R defined by

||x||2 =
√
〈x,x〉 =

( n∑
k=1

x2k

) 1
2

(1.3)

is a norm on Rn. We call it the Euclidean norm on Rn. The triangle inequality
is a consequence of the Cauchy-Schwarz inequality

〈x,y〉2 ≤ 〈x,x〉〈y,y〉 = ||x||2||y||2. (1.4)

It follows that Rn equipped with the Euclidean norm is a normed space.

Proposition. (Rn, || · ||2) is a normed space.

Euclidean distance on Rn. In a normed space (E, || · ||) we can introduce
the distance between two vectors by

d(x,y) := ||x− y||. (1.5)

It verifies the three following properties:

1. Positive-definiteness: d(x,y) ≥ 0 for all x,y ∈M and d(x,y) = 0 ⇔
x = y

2. Symmetry: d(x,y) = d(y,x)

3. Triangle inequality: d(x,y) ≤ d(x, z) + d(z,y)

for x,y, z ∈ E. The couple (E, d) is called a metric space. In Rn we measure
the distance between two vectors with the Euclidean distance (or metric) given
by

d(x,y) = d2(x,y) = ||x− y||2 =
√

(x1 − y1)2 + . . .+ (xn − yn)2. (1.6)
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Geometric Interpretation. In R2 or R3 the Euclidean metric d2(x,y) =
||x − y||2 corresponds to the Euclidean (usual) distance between two points x
and y. The Euclidean norm ||x||2 also corresponds to the length of a vector x.
The scalar product 〈x,y〉 measures the angle between the two vectors x and y:
if we designate θ = ^(x,y), then

〈x,y〉 = ||x||2||y||2 cos θ.

In particular if x and y are orthogonal vectors, i.e. θ = ±π/2, then 〈x,y〉 = 0.

1.3 Subspaces of Rn

To define certain notions and properties of subsets of Rn we only use the fact that
the space Rn has a metric, for example the Euclidean distance d(x,a) = d2(x,a).
We will later see that for the vector space Rn this does not depend on the choice
of d if d is defined from another norm on Rn.

Open ball. Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x,a) < r}

is called the open ball with centre a and radius r. The topological characteri-
zations of real subsets introduced in Analysis I extend themselves naturally to
the space Rn:

Open subset. A subset S ⊂ Rn is open if for all x ∈ S there exists a neigh-
borhood B(x, ε) with ε > 0 such that B(x, ε) ⊂ S. The empty set ∅ and the
space Rn are open. Any open ball B(a, r) is an open space. Any union of open
sets is open. Any finite intersection of open sets is open.

Closed subset. A subset S ⊂ Rn is closed if Rn \ S is open. The empty set
∅ and the space Rn are closed (and open).

The interior and the boundary of a set. Let S ⊂ Rn and a ∈ S. We say a
is in the interior of S if there exists a neighborhood B(a, ε) with ε > 0 such that
B(a, ε) ⊂ S. The set of all interior points of S is called the interior of S and

written
◦
S. A point a ∈ Rn is called a boundary point of S if any neighborhood

B(a, ε) contains points of S and points of Rn \S. The set of all boundary points
of S is called the boundary of S and written ∂S.

Example. The unit ball is open in Rn (in regards to the norm || · ||2) and is
defined by

B1 = B(0, 1) = {x ∈ Rn : ||x|| < 1}.

Its boundary is the sphere

∂B1 = {x ∈ Rn : ||x|| = 1}.
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The closure of a set. Let S ⊂ Rn and a ∈ Rn. We say a is a point of closure
of S if for any neighborhood B(a, ε):

B(a, ε) ∩ S 6= ∅.

The set of all points of closure of S is called the closure of S and written S̄.

Proposition. Let S ⊂ Rn. Then

1.
◦
S ⊂ S ⊂ S̄.

2. S̄ =
◦
S ∪ ∂S.

3. S is open if and only if S =
◦
S.

4. S is closed if and only if S = S̄.

Examples.

1. Let f : R −→ R be a continuous function. The graph Gf = {(x, f(x)) ∈
R2 : x ∈ R} represents a curve in R2. We have

◦
Gf = ∅. Therefore

Gf = ∂Gf . The graph of a continuous function is a closed set in R2.

2. Let B = {x ∈ R2 : ||x||2 < 1} and I = [0, 5].The set S defined by

S = B × I = {x ∈ R3 : x21 + x22 < 1 and 0 ≤ x3 ≤ 5}

is a cylinder. The set S is neither closed nor open. The boundary of S is
given by

∂S = ∂B × I ∪B × ∂I

1.4 Sequences in Rn

We introduce the notion of convergence of a sequence in a normed space and
the notion of a normed complete space.

Sequences. A sequence of elements of Rn is a function f : N −→ Rn, which
associates an element xk = f(k) ∈ Rn for every k ∈ N . Sequences are noted
(xk)k∈N.

Convergent sequence. A sequence (xk)k∈N converges toward x ∈ Rn, if for
every ε > 0, we can associate an integer Nε such that for every k ≥ Nε on a
d2(xk,x) < ε. We then write

lim
k→+∞

xk = x.

We also say the sequence (xk)k∈N is convergent and has a limit x ∈ Rn. When
the limit exists, it is unique. A sequence that is not convergent is said divergent.
With this definition the sequence (xk)k∈N converges toward x ∈ Rn if and only
if the sequence of distances (Dk)k∈N given by Dk = d(xk,x) converges toward
0:

lim
k→+∞

xk = x ⇔ lim
k→+∞

d2(xk,x) = 0. (1.7)
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Cauchy sequences. A sequence (xk)k∈N is a Cauchy sequence if for every
ε > 0, we can associate an N = Nε ∈ N such that k, l ≥ N implies d2(xk,xl) < ε.

Proposition. Any convergent sequence (xk)k∈N is a Cauchy sequence.

Proof. see Analysis I.

Normed complete space. A normed space (E, || · ||) is complete if any
Cauchy sequence converges relatively to this metric. A normed complete space
is called a Banach space.

Example - The Banach space R. We have shown in Chapter 2.5., Analysis
I, that the space R with the metric d(x, y) = |x− y| is complete. This result is
at the base of the corresponding result on the normed space (Rn, || · ||2).

Proposition. A sequence (xk)k∈N converges in the normed space (Rn, || · ||2)
if and only if the n numerical sequences (x1,k)k, . . . , (xn,k)k converge. The
following theorem follows:

Theorem. Any Cauchy sequence in Rn converges. Therefore the normed
space (Rn, || · ||2) is complete.

Bounded sequences in Rn. A sequence (xk)k∈N is bounded in (Rn, || · ||2)
if there exists a constant C > 0 such that ||xk||2 ≤ C for any k ∈ N. The
Bolzano-Weierstrass theorem also applies to bounded sequences in Rn:

Bolzano-Weierstrass theorem in Rn. Each bounded sequence (xk)k∈N in
Rn has a convergent subsequence (xkj )j∈N.

Proof. See the proof of the Bolzano-Weierstrass theorem in C, Analysis 1.

Sets and sequences in Rn. Let S ⊂ Rn. Then x ∈ S̄ if and only if x is the
limit of a sequence of elements of S. If S is closed and bounded then we can
extract a convergent subsequence from any sequence in S. In particular if the
sequence is convergent its limit is in S.

1.5 Continuous functions

The concept of continuous functions can be extended to applications f : Rn −→
Rm.

Continuous function. A function f : Rn −→ Rm is continuous in a ∈ Rn if

lim
x→a

f(x) = f(a),

that is to say, if for each sequence (xk)k∈N in Rn that converges to a

lim
k→∞

f(xk) = f(a).
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Proposition. The function f : Rn −→ Rm is continuous in a ∈ Rn if for each
ε > 0 there exists δ > 0 such that

d2(x,a) < δ ⇒ d2(f(x), f(a)) < ε.

If m = n = 1 then d2(x, y) = |x − y| and we end up with the result about the
continuity of a function f : R −→ R.

Rules of calculation for continuous functions. Linear combinations αf+
βg of two functions f ,g : Rn −→ Rm that are continuous in a ∈ Rn are con-
tiunous in a ∈ Rn. The composition of functions also preserves continuity (see
Analysis I).

We will now give examples of continuous functions. For linear applications
and bilinear forms see Section 1.7.

Example 1. The Euclidean norm || · ||2 : Rn −→ R+ is continuous over the
normed space (Rn, ||·||2). (Idea: prove the inequality

∣∣ ||x||2−||y||2∣∣ ≤ ||x−y||2.)

Example 2. Every norm || · || : Rn −→ R+ is continuous over the normed
space (Rn, || · ||2). In fact, as above∣∣ ||x|| − ||y||∣∣ ≤ ||x− y||

and by the inequality (1.11) ||x− y|| ≤ C||x− y||2 the affirmation follows.

Example 3. It is possible to build continous functions f : Rn −→ Rm from
continuous functions f : R −→ R using the calculation rules for continuous
functions. For example, let fi : R −→ R be continuous in ai ∈ R, i = 1, . . . n.

Then f : Rn −→ R defined as f(x) =

n∑
i=1

fi(xi), x =

n∑
i=1

xiei is continuous in

a =

n∑
i=1

aiei.

As seen in Analysis I, by the Bolzano-Weierstrass Theorem the following result
holds for real continuous functions.

Theorem. Let M ⊂ (Rn, || · ||2) be closed and bounded and f : M → R be
continuous. Then f reaches a maximum and a minimum in M .

Banach fixed point theorem. Let M ⊂ (Rn, || · ||2) be closed and bounded.
Let f : M −→ M be a contraction, that is to say, there exists 0 < q < 1 such
that for each x, y ∈M

d2(f(x), f(y)) ≤ q d2(x, y). (1.8)

Then there exists a unique x̄ ∈M such that f(x̄) = x̄.
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Limit of a function. By analogy to Analysis I, we can define the limit of a
function f : Rn −→ Rm in a ∈ Rn by the existence of a continuous extension.
This concept will be introduced in Chapter 3 for functions f : Rn −→ R to
illustrate surprising results of differential calculus.

1.6 Other norms on Rn

There exists other norms over Rn for example

||x||1 =

n∑
k=1

|xk| (1.9)

||x||∞ = max
1≤k≤n

|xk| (1.10)

To prove that the notion of convergence in Rn does not depend on the choice
of the norm we will introduce the notion of norm equivalence. Two norms || · ||
and ||| · ||| are equivalent if there exists two constants C1, C2 > 0 such that for
all x ∈ E :

C1||x|| ≤ |||x||| ≤ C2||x||

Of course the norms || · ||1, || · ||2, || · ||∞ are equivalent as

1√
n
||x||1 ≤ ||x||2 ≤ ||x||1

and
||x||∞ ≤ ||x||2 ≤

√
n ||x||∞.

Let || · || be a norm on Rn. Then there exist a constant C > 0 such that

||x|| ≤ C||x||2 for all x ∈ Rn. (1.11)

In fact, by writting x =
n∑
i=1

xiei, by the properties of a norm and the Cauchy-

Schwarz inequality :

||x|| ≤
n∑
i=1

|xi| · ||ei|| ≤
( n∑
i=1

x2i

) 1
2
( n∑
i=1

||ei||2
) 1

2

= C||x||2

with C =

( n∑
i=1

||ei||2
) 1

2

. We will prove that all norms on Rn are equivalent.

This property implies that the notion of convergence that we have defined with
the distance induced by a norm does not depend on the norm we use.

Continuity of norms on Rn. Each norm || · || : Rn −→ R+ is continuous
over the normed space (Rn, || · ||2). In fact, as above∣∣ ||x|| − ||y||∣∣ ≤ ||x− y||

and from the inequality (1.11): ||x− y|| ≤ C||x− y||2, the affirmation follows.
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Proposition- Equivalence of norms. Let || · || be a norm on Rn. Then || · ||
is equivalent to || · ||2.

Proof. M = {x ∈ Rn : ||x||2 = 1} is a bounded and closed subset of (Rn, || ·
||2). The continuous function || · || reaches its maximum and its minimum in M .
By the homogeneity of norms there exists C1, C2 > 0 such that

C1||x||2 ≤ ||x|| ≤ C2||x||2 (1.12)

for all x ∈ Rn. It follows that in Rn, the notion of an open set does not depend
on the norm since all norms are equivalent. For example let

B(a, ε) = {x ∈ Rn : ||x− a||2 < ε}

be the ε-neighborhoods relatively to the Euclidean norm and

B′(a, ε) = {x ∈ Rn : ||x− a||∞ < ε}

the ε-neigborhoods relatively to the maximum norm, then we have the following
inclusions

B′(a, ε/
√
n) ⊂ B(a, ε) ⊂ B′(a, ε).

Balls for norms 1, 2,∞

1.7 Linear applications

For each linear application f : Rn → Rm, we can associate a matrix A ∈ Mm,n

such that
f(x) = Ax (1.13)

for all x ∈ Rn. Explicitly, if A = aij , i = 1 . . .m, j = 1 . . . n, then

Ax =

m∑
i=1

n∑
j=1

aijxjei
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where ei ∈ Rm are the vectors of the standard basis. By the Cauchy-Schwarz
inequality

||Ax||22 =

m∑
i=1

n∑
j=1

n∑
l=1

aijailxjxl =

m∑
i=1

( n∑
j=1

aijxj

)2

≤
( m∑
i=1

n∑
j=1

a2ij

)
||x||22.

We say that the application defined by A is bounded since we have a constant
C > 0 such that

||Ax||2 ≤ C||x||2 (1.14)

for all x ∈ Rn. Here C = ||A||2 :=

( m∑
i=1

n∑
j=1

a2ij

) 1
2

. The continuity of the linear

application f(x) = Ax follows.

Proposition. Each linear function f : Rn → Rm is bounded and therefore
continuous.

Proof. For each ε > 0 choose δ = Cε−1 with C of equation (1.14).

Bilinear forms. We can identify matrices A ∈ Mm,n with bilinear forms
b : Rm × Rn → R as

b(y,x) = 〈y, Ax〉Rm =

m∑
i=1

n∑
j=1

aijxjyi (1.15)

Note that
b(y,x) = 〈ATy,x〉Rn

where AT ∈ Mn,m is the transpose of matrix A. In particular b(ei, ej) = aij .
The bilinear form b : Rm × Rn → R defined by (1.15) is continuous in all
(y,x) ∈ Rm × Rn.
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Chapter 2

Curves in Rn

2.1 Differentiable curves

Definition. Let I ⊂ R be an interval. A curve (or a path) is a continuous
function

f : I −→ Rn.

A curve is an n-tuplet of continuous functions fi:

f =


f1
·
·
·
fn

 .

A curve is differentiable if the n functions fi are differentiable. A curve is of
class Ck(I) if all n functions fi are of class Ck(I). For all t ∈ I we call

f ′(t) =

f
′
1(t)
...

f ′n(t)


the tangent vector at point f(t).

For a differentiable curve, we have by definition of a derivative

f ′(t) = lim
h→ 0
h 6= 0

f(t+ h)− f(t)

h

in other words,
f(t+ h) = f(t) + f ′(t)h+ o(h)

where o(h) denotes a continuous curve such that

lim
h→0

o(h)

|h|
= 0.
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Application to mechanics. A curve describes the movement of a particle if
we interpret the variable t as the time and f(t) as the position of the particle
at time t (in mechanics physical particles may be represented as point particles,
that is to say, they lack spatial extension). Then, the image of f describes the
orbit and the graph of f describes the movement in spacetime. The tangent
vector at time t represents the velocity vector and

||f ′(t)||2 =
√
f ′1(t)2 + . . .+ f ′n(t)2

is the speed at time t. The vector

f ′′(t) =

f
′′
1 (t)
...

f ′′n (t)


represents the acceleration at time t. We usually write r(t),v(t),a(t) to denote
the position, velocity and acceleration. Time derivatives are often written as
ṙ(t), r̈(t), . . .. The equation of motion for a particle of mass m is given by
Newton’s law

ma(t) = F(t, r(t),v(t)) (2.1)

where the function F denotes the force that acts on the particle. It is a system
of second order differential equations to which we must add initial conditions
(see Chapter 7):

mr̈(t) = F(t, r(t), ṙ(t)), r(0) = r0, ṙ(0) = v0. (2.2)

A system of N particles in R3 can be represented by a vector in R3N . It can
be useful to combine the position vector and the velocity vector of a particle of
mass m in a single vector (

r(t)
v(t)

)
or

(
r(t)
p(t)

)
where p(t) = mv(t) is the momentum of the particle. These vectors belong to
a space called the phase space, and is important in physics and for differential
equations.
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Curves in the phase space of a pendulum a(t)=-g l sin(x(t)).

Definition. A curve is said to be smooth if f ′(t) 6= 0 for all t ∈ I. A t ∈ I
such that f ′(t) = 0 is singular (or stationary).

Examples.

1. Circles. Let r > 0 and f : [0, 2π] −→ R2 given by

f(t) =

(
r cos t
r sin t

)
,

or in R3 by the function

f(t) =

r cos t
r sin t

0


We note that in R2:

Im(f) = f([0, 2π]) = {(x, y) ∈ R2 : x2 + y2 = r2}.
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We note that in R3:

Im(f) = f([0, 2π]) = {(x, y, z) ∈ R3 : x2 + y2 = r2, z = 0}.

In R2 we have

f ′(t) =

(
−r sin t
r cos t

)
and ||f ′(t)||2 = r

or in R3 the function

f ′(t) =

−r sin t
r cos t

0

 and ||f ′(t)||2 = r

This curve is smooth. Also note that 〈f ′(t), f(t)〉 = 0 and f ′′(t) = −f(t).

2. A line in Rn. Let r0,v ∈ Rn, t0 ∈ R v 6= 0 and r : R −→ Rn given by

r(t) = r0 + v(t− t0).

This parametrization of a line describes the movement of a free particle
with the initial conditions r(t0) = r0, ṙ(t0) = v. The velocity is constant:

ṙ(t) = v and ||ṙ(t)||2 = ||v||2

To depict its image in Rn by a system of equations we need to find (n−1)
vectors wj that are mutually orthogonal and also orthogonal to v. We
have

Im(r) = r(R) = {r ∈ Rn : 〈r− r0,wj〉 = 0}

for all j = 1, . . . , n − 1. A line is described by a linear system of (n − 1)
independent equations. The line r(t) = r0 + v(t− t0) is a smooth curve.

3. Any graph Gf of a real continuous function f : R→ R can be considered
as a curve in R2:

f(t) =

(
t

f(t)

)
Obviously Im(f) = Gf . For the tangent vector we obtain

f ′(t) =

(
1

f ′(t)

)
and ||f ′(t)||2 =

√
1 + f ′(t)2

4. Helix. For r > 0 and c ∈ R let f : R −→ R3 be given by

f(t) =

r cos t
r sin t
ct


The tangent vector is given by

f ′(t) =

−r sin t
r cos t
c

 and ||f ′(t)||2 =
√
r2 + c2
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5. A non injective curve. Let f : R −→ R2 be the function

f(t) =

(
t2 − 1
t3 − t

)
We have f(−1) = f(1) = 0 and

Im(f) = f(R) = {(x, y) ∈ R2 : x2 + x3 = y2}

We calculate the tangent vectors:

f ′(t) =

(
2t

3t2 − 1

)
and ||f ′(t)||2 =

√
9t4 − 2t2 + 1

Therefore f ′(−1) = (−2, 2) and f ′(1) = (2, 2).
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6. Neil Parabola (or semi cubic parabola). We consider the curve f : R −→
R2 given by

f(t) =

(
t2

t3

)
.

Then f ′(t) =

(
2t
3t2

)
. The point (0, 0) is a singular point. The image of f

is given by the equation x3 = y2.

Intersection of smooth curves. Let f : I1 −→ Rn, g : I2 −→ Rn be smooth
curves such that f(t1) = g(t2). In other words, Im(f)∩ Im(g) is non empty. The
angle of intersection ϑ is defined as the angle between the two tangent vectors.
We determine ϑ ∈ [0, π] by

cosϑ =
〈f ′(t1),g′(t2)〉
||f ′(t1)||2||g′(t2)||2

Example. Consider example 5. We have f(−1) = f(1) = 0 and

cosϑ = 0

i.e ϑ = π/2.
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2.2 Length of curves

The idea is to approximate a curve by a sequence of segments and from that
define the concept of length of a curve.

Length of a segment. Let f : I −→ Rn be a curve and t1, t2 ∈ I. The
segment connecting the points f(t1) and f(t2) is the straight line s : [0, 1] −→ Rn
given by

s(τ) = f(t1)(1− τ) + f(t2)τ

The length of the segment is

L(s) = ||f(t2)− f(t1)||2.

Definition - Rectifiable curve. Assume that a curve f : [a, b] −→ Rn is
partitioned into a sequence of segments [a, b], each of which has a norm tending
to zero. If the sequence of the length of these segments converges to a finite
number L > 0 we call such a curve a rectifiable curve and L the length of the
curve f .

For a differentiable curve f the idea is to build a Riemann sum for v(t) =
||f ′(t)||2.

Theorem. Let f be a curve of class C1([a, b]). Then f is rectifiable and

L =

∫ b

a

||f ′(t)||2 dt (2.3)

We call L the arc-length of f .
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Sketch of proof. Let N ∈ Z+. For all k = 0, . . . , N −1 let ak = a+ k
N (b−a),

using the mean value theorem we have (to use for each f ′i):

fi(ak+1)− fi(ak) =

∫ ak+1

ak

f ′i(t) dt =
b− a
N

f ′i(ck,i), ck,i ∈]ak, ak+1[.

Calculating the Euclidean norm and sum over k we obtain:

N−1∑
k=1

||f(ak+1)− f(ak)||2 =
b− a
N

N−1∑
k=1

√√√√ n∑
i=1

f ′i(ck,i)
2.

Using the uniform continuity of f ′ and of the Euclidean norm, the last sum
converges to the integral of ||f ′(t)||2 (exercise!).

Theorem. The length of the arc given by (2.3) does not depend on the
parametrization that has been chosen. (see Analysis 3)

An inequality for the length. Let f be a curve of class C1([a, b]). Then,

||
∫ b

a

f ′(t) dt||2 ≤
∫ b

a

||f ′(t)||2 dt,

which is equivalent to

||f(b)− f(a)||2 ≤
∫ b

a

||f ′(t)||2 dt.

Proof. We use the linearity of the integral and the Cauchy-Schwarz inequality
for the scalar product in Rn:

||f(b)− f(a)||22 = 〈f(b)− f(a), f(b)− f(a)〉

= 〈f(b)− f(a),

∫ b

a

f ′(t) dt〉

=

∫ b

a

〈f(b)− f(a), f ′(t)〉 dt

≤
∫ b

a

||f(b)− f(a)||2||f ′(t)||2 dt = ||f(b)− f(a)||2
∫ b

a

||f ′(t)||2 dt.
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Examples.

1. Arc-length of a circle.

L(α) =

∫ α

0

||f ′(t)||2 dt = rα

2. Arc-length of a segment of a straight line.

L =

∫ b

a

||v||2 dt = ||v||2(b− a)

3. The arc-length of a function f ∈ C1([a, b]) is given by

L =

∫ b

a

√
1 + f ′(t)2 dt

Let us calculate the arc-length of the function coshx between a < b.
Evidently,

L =

∫ b

a

√
1 + sinh(t)2 dt =

∫ b

a

cosh t dt = sinh b− sinh a.

4. Arc-length of a helix.

L =

∫ b

0

√
r2 + c2 dt = b

√
r2 + c2
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Line integral. Let f be a curve of class C1([a, b]). For any continuous function
φ : Rn → R we can define∫

Im(f)

φ ds =

∫ b

a

φ(f(t))||f ′(t)||2 dt. (2.4)

It is a subject of Analysis 3.
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Chapter 3

Real-valued functions in Rn

3.1 Introduction

Definition. Let D ⊂ Rn. A function f : D −→ R is called a real-valued
function on D ⊂ Rn. Given a real number c ∈ Im(f), we call the set

Nf (c) = {x ∈ D : f(x) = c}

the level set c of f . The graph of f is given by

Gf =

{(
x

f(x)

)
: x ∈ D

}
⊂ Rn+1.

The graph describes a hypersurface of equation xn+1 = f(x) in Rn+1.

The case n = 2. For functions f : R2 −→ R we can call the set Nf (c) a
contour line. We can consider the value f(x1, x2) as the altitude of the point
(x1, x2). So Nf (c) corresponds to the contour line c on a geographic map. We
can graphically represent a function f : R2 −→ R by its graph in R3 or by the
projection of its contour lines onto the plane R2.
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Examples. In physics, the functions f : Rn −→ R are often called scalar
fields. The gravitational potential of a mass or the electric potential of an
electric charge are examples of scalar fields:

φ : R3 \ {0} −→ R, φ(x) =
k

||x||2

for a real constant k. In mechanics, we often consider systems where the energy
is conserved (Hamiltonian systems). For the movement of a particle of mass m
in space, subject to the potential V (x), its energy is a real-valued function of
its momentum p = mv here v is the velocity and x the position in space:

E : Rn × Rn −→ R, E(p,x) =
||p||22
2m

+ V (x).

The movement follows the contour lines of the energy E in phase space.

3.2 Limits and continuity of a real-valued func-
tion

We refer to the concepts of limit (and punctured limit) presented in Analysis 1
(see Chapters 2 and 4).

Definition - limit of a function. Let D ⊂ Rn, a ∈ Rn be a point of closure
of D and f : D −→ R a real-valued function. We say f has a limit L ∈ R as
x approaches a if for any ε > 0 there exists a δ > 0 such that ||x − a||2 < δ
implies |f(x) − L| < ε. In other words, if a ∈ D the limit exists if and only if
L = f(a), i.e. if and only if f is continuous at a. If a /∈ D the limit exists if and
only if f admits a continuous extension at a. This definition is equivalent to
the definition of limit by sequences (see Analysis 1) : lim

x→a
f(x) = L if and only

if for any sequence xk ∈ D, converging toward a, we have lim
k→+∞

f(ak) = L. In

particular if a ∈ D we find the definition of a continuous function at a ∈ D:

Continuous function. A function f : D −→ R is continuous at a ∈ D if for
any ε > 0 there exists a δ > 0 such that ||x− a||2 < δ implies |f(x)− f(a)| < ε.
In particular, f commutes with the limit process: for any sequence ak ∈ D
converging toward a ∈ D we have

lim
k→+∞

f(ak) = f(a) = f( lim
k→+∞

ak).

Example. Let p ∈ Rn, fp : Rn −→ R be given by fp(x) = sin〈p,x〉. Then
fp(x) is a continuous function at any a ∈ Rn: for any sequence ak converging
toward a we have:

lim
k→+∞

〈p,ak〉 = 〈p,a〉

since |〈p,ak − a〉| ≤ ||ak − a||2||p||2 and sin(x) is continuous.
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Non-existence of a limit I. Let f : R2 −→ R be given by

f(x, y) =

{
xy

x2+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

f(x, y) is not continuous at (0, 0), namely lim
(x,y)→(0,0)

f(x, y) does not exist. A

simple method to prove that the limit does not exist is to study the behaviour of
the function f when approaching the point a = (0, 0) along straight lines passing
(0, 0). For example we consider the straight line given by C = {(x, y) : y = x}.
For any point (x, y) ∈ C \ {(0, 0)} we have

f(x, y) = f(x, x) =
x2

x2 + x2
=

1

2
.

Then lim
(x, y)→ (0, 0)

(x, y) ∈ C

f(x, y) = lim
x→0

f(x, x) does not exist since f(0, 0) = 0.

Non-existence of a punctured limit I.

lim
(x, y)→ (0, 0)

(x, y) ∈ C \ {(0, 0)}

f(x, y) = lim
x→0

f(x, x) =
1

2
.

On the straight line D = {(x, y) : y = 0}, for every point (x, y) ∈ D \ {(0, 0)}
we have:

f(x, y) = f(x, 0) = 0

and so
lim

(x, y)→ (0, 0)
(x, y) ∈ D \ {(0, 0)}

f(x, y) = lim
x→0

f(x, 0) = 0.

We conclude that lim
(x, y)→ (0, 0)
(x, y) 6= (0, 0)

f(x, y) does not exist.
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Graph and contour lines of the function

{
xy

x2+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).
.

Note that we do not see the discontinuity of the function because the software
draws segments between calculated points. As a consequence there is the ap-
parition of ”strange” summits.

Parametrized version. In general, for a function f : Rn −→ R we consider
the lines given by vt + a, v ∈ Sn−1 = {v ∈ Rn : ||v||2 = 1} and we study the
functions with one variable t given by

gv(t) = f(vt+ a)

when t tends to 0 (with t 6= 0 for punctured limits). If we can find two vectors
v,w ∈ Sn−1 such that gv(t) and gw(t) do not behave the same way when t
approaches 0, then neither the limit nor the punctured limit of f exists. The
limit of a function describes its behavior in a neighborhood. That is why it
is not sufficient to study the functions gv(t) for all v ∈ Sn−1, as the following
example shows:

Non existence of a limit II. Let f : R2 −→ R be

f(x, y) =

{
1, if y = x2 et x > 0;
0, otherwise.

(3.1)

Of course, f is not continuous at (0, 0) as for each neighborhood of (0, 0):
f(x, x2) − f(0, 0) = 1 with x > 0 small enough. On the other hand gv(t) = 0
for all v ∈ S1 and t small enough.
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3.3 Partial derivatives, differential and functions
of class C1

3.3.1 Partial derivatives

Definition A function f : Rn −→ R is partially differentiable with respect to
the variable xk at a point a ∈ Rn if the limit

∂f

∂xk
(a) = lim

h→ 0
h 6= 0

f(a + hek)− f(a)

h
(3.2)

exists. The limit ∂f
∂xk

(a) is called the partial derivative of f with respect to xk
at a ∈ Rn.

Remark. We also use the notation

Dkf(a) =
∂f

∂xk
(a).

or if the real variables of f are explicitly given

Dxf(x, y, z) =
∂f

∂x
(x, y, z), Dyf(x, y, z) =

∂f

∂y
(x, y, z), etc..

Remark. The limit ∂f
∂xk

(a) exists if and only if the function h 7→ f(a + hek)
is differentiable at h = 0. In that case

∂f

∂xk
(a) =

d

dh

∣∣∣∣
h=0

f(a + hek). (3.3)

Calculation rules for partial derivatives. By the remark above, partial
derivatives satisfy the properties of linearity and the product and quotient rules
(like the derivative of a function of a single variable - see Analysis I):

∂(αf + βg)

∂xk
(a) = α

∂f

∂xk
(a) + β

∂g

∂xk
(a) (3.4)

∂(f · g)

∂xk
(a) = g(a)

∂f

∂xk
(a) + f(a)

∂g

∂xk
(a) (3.5)

∂(f/g)

∂xk
(a) =

(
g(a)

∂f

∂xk
(a)− f(a)

∂g

∂xk
(a)
)
/g(a)2. (3.6)

For the derivatives of composed functions, see Section 3.5.

Definition. Given U ∈ Rn. A function f : U −→ R is partially differentiable
in U if the n partial derivatives Dkf(x), k = 1, . . . , n exist for all x ∈ U . The
vector

∇f(x) =


D1f(x)
·
·
·

Dnf(x)

 =


∂f
∂x1

(x)

·
·
·

∂f
∂xn

(x)


is called the gradient of f (at the point x).
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Remark. The gradient is also written gradf(x). Note that

∇f(x) =

n∑
k=1

Dkf(x) ek

therefore Dkf(x) = 〈∇f(x), ek〉.

Examples.

1. Let v ∈ Rn be fixed and l : Rn −→ R, a linear form, be defined as

l(x) = 〈v,x〉.

The function l(x) is partially differentiable and

∂l

∂xk
(x) = lim

h→0

l(x + hek)− l(x)

h
= 〈v, ek〉 = vk.

Therefore

∇l(x) =

n∑
k=1

〈v, ek〉 ek = v

2. Let A ∈ Mn,n(R) be a symmetric matrix and q : Rn −→ R the quadratic
form defined as

q(x) =
1

2
〈Ax,x〉.

The function q(x) is partially differentiable and

∂q

∂xk
(x) = lim

h→0

q(x + hek)− q(x)

h
= 〈Ax, ek〉.

Therefore

∇q(x) =

n∑
k=1

〈Ax, ek〉 ek = Ax

3. Consider the function r : Rn −→ R defined as r(x) = ||x||2. It is partially
differentiable in the set Rn \ {0} with

∂r

∂xk
(x) =

xk
r(x)

.

Consequently, its gradient is

∇r(x) =
x

r(x)
=

x

r
.

If f : R \ {0} −→ R is differentiable, then the composition f(r) = f(r(x))
is partially differentiable in Rn \ {0} and

∇f(r) =
f ′(r)x

r

where f ′ denotes the derivative of f with respect to the variable r.
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4. Let us show that the function f : R2 −→ R defined as

f(x, y) =

{
xy

x2+y2 if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

is partially differentiable in Rn. First of all, note that for all (x, y) 6= (0, 0)
we have

∂f

∂x
(x, y) =

y(y2 − x2)

(x2 + y2)2

and by symmetry
∂f

∂y
(x, y) =

x(x2 − y2)

(x2 + y2)2
.

f is also partially differentiable at (0, 0) as

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= 0

and
∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= 0.

Note that f is not continuous at (0, 0) (see Section 3.2). Therefore, unlike
the case n = 1, the existence of the partial derivatives does not imply
the continuity of a function, the partial derivatives must be continuous as
well.

Proposition - The continuity of partial derivatives implies that the
function is continuous. Let f : Rn −→ R be a function such that all its n
partial derivatives exist and are continuous at a ∈ Rn. Then, the function f is
continuous at a.

Proof. For h ∈ Rn let ak = a +

k∑
j=1

hjej , k = 0, . . . , n. Then, a0 = a,

an = a + h et ak − ak−1 = hkek, k = 1, . . . , n. We write

f(a + h)− f(a) =

n∑
k=1

f(ak)− f(ak−1)

By the mean value theorem for single variable functions, for each k = 1, . . . , n,
there exists ck ∈ R, |ck| ≤ |hk| such that

f(ak)− f(ak−1) = hk
∂f

∂xk
(ak−1 + ckek). (3.7)

Consequently,

f(a + h)− f(a) =

n∑
k=1

hk
∂f

∂xk
(ak−1 + ckek)

=

n∑
k=1

hk

(
∂f

∂xk
(ak−1 + ckek)− ∂f

∂xk
(a)

)
+ 〈∇f(a),h〉

(3.8)

The continuity of the partial derivatives and the linear form 〈∇f(a),h〉 implies
that f(a + h)− f(a)→ 0 as h→ 0.
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3.3.2 Differentiable functions and differential

Definition. A function f : Rn −→ R is said to be differentiable at a point
a ∈ Rn if and only if there exists a linear form daf(x) := 〈daf,x〉, called the
differential of f at the point a, such that

lim
h→ 0
h 6= 0

f(a + h)− f(a)− daf(h)

||h||2
= 0.

The differential daf is also called the total differential of f at a. f is said to be
differentiable in U ⊂ Rn, if f is differentiable at each point a ∈ U .

Directional derivatives. Let a,v ∈ Rn, v 6= 0 and k : R −→ Rn be the
straight line given by k(t) = a + vt. The derivative

d

d t
f(a + vt)

∣∣∣∣
t=0

is called the directional derivative of f at a along the vector v. If f is differen-
tiable at a, then

d

d t
f(a + vt)

∣∣∣∣
t=0

= 〈daf,v〉.

By taking the directions ek we see that any differentiable function at a is par-
tially differentiable at a. It follows that for any function that is differentiable
at a:

daf(v) = 〈daf,v〉 = 〈∇f(a),v〉, (3.9)

therefore
d

d t
f(a + vt)

∣∣∣∣
t=0

= 〈∇f(a),v〉.

The Taylor expansion at order 1 follows:

Theorem. Let U ⊂ Rn be open and f : U −→ R be differentiable at a ∈ U .
Then,

f(a + h) = f(a) + 〈∇f(a),h〉+ o(h) (3.10)

and

lim
h→0

o(h)

||h||2
= 0.

In particular, f is continuous at a.

Summary. A differentiable function at a is partially differentiable and contin-
uous at that point. The differential daf of f at a is the linear form 〈∇f(a),h〉.

3.3.3 Functions of class C1

Definition. Let U ⊂ Rn be an open set. A function f : U −→ R is said to
be of class C1(U) if its n partial derivatives exist and are continuous at each
x ∈ U .
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Remark. The continuity of the partial derivatives at a point a implies the
continuity of the function at a (see equation (3.8)). It follows that any function
of class C1(U) is differentiable (and therefore continuous) at each a ∈ U :

Proposition. Let U ⊂ Rn be open and f : U −→ R of class C1(U). Then f
is differentiable at each a ∈ U . In particular, f has an expansion of order one
(see equation (3.10)) at each a ∈ U .

Theorem 3.1. - Mean value theorem. Let U ⊂ Rn be open and f : U −→ R
of class C1(U). Let x,y ∈ U be such that the segment defined by k(t) :=
(1− t)x + ty, 0 ≤ t ≤ 1, is in U . Then

f(y)− f(x) = 〈
∫ 1

0

∇f((1− t)x + ty) dt,y − x〉. (3.11)

Proof. We define g : [0, 1] → R as g(t) := f((1 − t)x + ty). Then g is of class
C1 such that g(0) = f(x), g(1) = f(x) and g′(t) = 〈∇f((1− t)x + ty),y − x〉.
Equation quation (3.11) is equivalent to

g(1)− g(0) =

∫ 1

0

g′(t) dt.

3.4 Tangent hyperplane

For differentiable functions (we always use functions of class C1 to simplify the
presentation) the geometric interpretation of the linear term f(a) + 〈∇f(a),h〉
is that of the tangent hyperplane, generalizing the notion of the tangent for
functions defined in R.

Example. Let f : R2 −→ R be the function of class C1 defined as

f(x, y) = x2 + xy − y2.

We have

∇f(x, y) =

(
2x+ y
−2y + x

)
In a neighborhood of the point (a, b) = (1, 1) the function behaves like

f(x, y) ≈ f(a, b) + 〈∇f(a, b), (x− a, y − b)〉
= f(a, b) + (2a+ b)(x− a) + (−2b+ a)(y − b)
= 1 + 3(x− 1)− (y − 1)

The function h(x, y) = 1 + 3(x − 1) − (y − 1) describes a plane in Rn, i.e. the
graph Gh is a plane in R3. We have (a, b, f(a, b)) = (a, b, h(a, b)), therefore
it is a plane containing the point (a, b, f(a, b)) of the graph of f and tangent
to the graph of f . This plane is a generalization of the tangent line for real
valued single variable functions. If we generalize it to Rn we call it the tangent
hyperplane.
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The graph of the function f(x, y) = x2 + xy − y2 and its hyperplane at the
point (1, 1, 1) ∈ R3.

Equation of a hyperplane. Given v ∈ Rn and the linear form l : Rn −→ R
defined as

l(x) = 〈v,x〉.

For all a ∈ Rn and h ∈ R the graph of the function

ha(x) = h+ l(x− a) = h+ 〈v,x− a〉

defines a hyperplane containing the point (a, h) ∈ Rn+1. The equation of this
hyperplane in Rn+1 is given by

xn+1 = h+ 〈v,x− a〉 = h+

n∑
k=1

vk(xk − ak).

Tangent hyperplane. If f : U −→ R is of class C1(U), then for any a ∈ U
there exists a neighborhood V ⊂ U of a such that

f(x) = f(a) + 〈∇f(a),x− a〉+ o(x− a).

Consequently, the equation of the tangent hyperplane is given by

xn+1 = f(a) + 〈∇f(a),x− a〉.

If n = 1 we find the equation of the tangent x2 = f(a) + f ′(a)(x1 − a), known
from Analysis 1.

31



3.5 Gradient and level lines

The composition rule - 1. Let I be an interval and k : I −→ Rn a curve
of class C1. Let f : Rn −→ R be a real-valued function of class C1. Then the
composed function f ◦ k : I −→ R is of class C1 and

d

d t
f(k(t)) = 〈∇f(k(t)),k′(t)〉.

Example. Let f : R2 −→ R be the function defined by

f(x, y) = x2 + y2

and k : R −→ R2 the logarithmic spiral given by

k(t) = (e−ct cos t, e−ct sin t), c > 0.

Since

∇f(x, y) =

(
2x
2y

)
and

k′(t) =

(
−ce−ct cos t− e−ct sin t
−ce−ct sin t+ e−ct cos t

)
we obtain

d

d t
f(k(t)) = 2k1(t)k′1(t) + 2k2(t)k′2(t)

= −2ce−2ct

The curve k(t) is in R2 (shown in red) and the curve c(t) =

(
k(t)

f(k(t))

)
(in

blue) is a curve in the graph Gf ⊂ R3.The derivative d
d tf(k(t)) shows how the

altitude varies depending on t or more precisely, it is the slope of the function
f when following the curve k(t).
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Contour lines. If k is a curve such that

f(k(t)) = c = constant

i.e. k is a curve in the level set c of f we have

d

d t
f(k(t)) = 〈∇f(k(t)),k′(t)〉 =

d

d t
c = 0.

We note that the gradient of f is orthogonal to the tangent vector of a contour
line, i.e. of a curve in the level set Nf (c).

The gradients are orthogonal to the contour lines.

Example. Let f : R2 −→ R be a function of class C1 given by

f(x, y) = x2 + y2.

We have

∇f(x, y) =

(
2x
2y

)
.

The sets of level c of f for c > 0 are circles with centre (0, 0) and radius
√
c. We

can represent them in a parametrized form with the curves kc : [0, 2π] −→ R2

given by

kc(t) =

(√
c cos t√
c sin t

)
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A geometric interpretation of the gradient. We can interpret the deriva-
tive

d

d t
f(k(t))

as the slope of the function f when following the curve k(t). Using the compo-
sition rule we have

d

d t
f(k(t)) = 〈∇f(k(t)),k′(t)〉 = ||∇f(k(t))||2||k′(t)||2 cosα(t)

where α(t) is the angle between the gradient of f and the tangent vector of the
curve k at the time t. We see that this value is maximal if α(t) = 0. Therefore
the vector ∇f(a) at a point a points in the direction of the sharpest slope of f .

Composition rule - 2 Let D ∈ Rn be open. Let ρ : D −→ R be a function of
class C1 and f : R −→ R be of class C1 with derivative f ′. Then the composition
of functions f ◦ ρ : D −→ R is of class C1 and

∇f(ρ(x)) = f ′(ρ(x))∇ρ(x).

Example. See example 3, Section 3.3.1: if f = f(r) depends only on the
radial distance, we have for all x 6= 0:

∇f(r) =
f ′(r)x

r
.

Example. To find solutions of the partial differential equation

∂u

∂x
(x, y)− ∂u

∂y
(x, y) = 0,

note that u(x, y) = f(x + y) (therefore ρ(x, y) = x + y) gives a solution for all
differentiable f .

The graph and contour lines of the function u(x, y) = f(x+ y).
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3.6 Higher order partial derivatives

Let U ⊂ Rn be open and f : U −→ R a partially differentiable function. The
partial derivatives Dkf : U −→ R can also be partially differentiated. In this
case we say that f is twice partially differentiable. Therefore the second order
partial derivatives DjDkf exist.

Example. Let f : R2 −→ R be the real valued function defined as

f(x, y) = x2 sin y + yex

Obviously f is of class C1(R2) and

Dxf(x, y) = 2x sin y + yex, Dyf(x, y) = x2 cos y + ex

The partial derivatives are real valued function of class C1(Rn) and we can
calculate the four partial derivatives

Dx(Dxf(x, y)) = Dxxf(x, y), Dy(Dxf(x, y)) = Dyxf(x, y)

Dx(Dyf(x, y)) = Dxyf(x, y), Dy(Dyf(x, y)) = Dyyf(x, y)

We have

Dxxf(x, y) = 2 sin y + yex, Dyxf(x, y) = 2x cos y + ex

Dxyf(x, y) = 2x cos y + ex, Dyyf(x, y) = −x2 sin y

Note thatDxyf(x, y) = Dyxf(x, y). It is a general property of partial derivatives
under certain hypotheses.

Definition. Let U ⊂ Rn be an open set. A function f : U −→ R is said to be
of class Cm(U) if all of its partial derivatives of order m exist and are continuous
at x for all x ∈ U . The function f is said to be of class C∞(U) if each of its
successive partial derivatives exist and are continuous at each x ∈ U .

Theorem. Let U ⊂ Rn be an open set and f : U −→ R be of class C2(U).
Then for each 1 ≤ j, k ≤ n and each x ∈ U :

Djkf(x) = Dkjf(x).

Proof. Explain

Remark. This result can be generalized to partial derivatives of order ≥ 2.
For example, if f : U −→ R is a function of class C3(U) we have

Djklf(x) = Dkjlf(x) = Djlkf(x) = . . . etc.

There are

(
n+m− 1

m

)
partial derivatives of order m (instead of nm).
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Definition. The matrix

(Djkf(x))j,k =

D11f(x) · · · Dn1f(x)
· · · · · ·

D1nf(x) · · · Dnnf(x)


is called the Hessian matrix of f , written Hess(f)(x).

Remark. Note that

Hess (f)(x) =
(
D1∇f(x) · · · Dn∇f(x)

)
.

Definition. Let U ⊂ Rn be an open set and f : U −→ R be of class C2(U).
Then the function ∆f : U −→ R defined as

∆f(x) =

n∑
k=1

Dkkf(x)

is called the Laplacian of the function f . We call the symbol ∆ the Laplacian.

Remark. Note that
∆f(x) = tr (Hess (f)(x))

where tr(A) denotes the trace of the matrix A.

Examples.

1. For v ∈ Rn, we consider the linear form l : Rn −→ R defined as

l(x) = 〈v,x〉.

The function l(x) is of class C2(Rn (even of class C∞(Rn)) By Chapter
3.3

∇l(x) =

n∑
k=1

〈v, ek〉 ek = v

Therefore
Hess (l)(x) = 0

at all x ∈ Rn.

2. Let A ∈ Mn,n(R) be a symmetric matrix and q : Rn −→ R the quadratic
form defined as

q(x) =
1

2
〈Ax,x〉.

It is of class C2(Rn) (even of class C∞(Rn)). By Chapter 3.3

∇q(x) = Ax.

Then
Hess (q)(x) = A

at all x ∈ Rn.
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3. Consider the function r : Rn −→ R defined as r(x) = ||x||2. It is of class
C2(Rn \ {0}) (even of class C∞(Rn \ {0}). Using

∇r(x) =
x

r

we find (Djkf(x))j,k = 1
r δj,k −

xjxk

r3 where δj,k = 1 if j = k and δj,k = 0
otherwise, i.e.

Hess (r)(x) =


1
r −

x2
1

r3 −x1x2

r3 · · · −x1xn

r3

−x1x2

r3
1
r −

x2
2

r3 · · · −x2xn

r3

· · · · · ·
−x1xn

r3 −x2xn

r3 · · · 1
r −

x2
n

r3


and

∆r = ∆r(x) =

n∑
k=1

1

r
− x2k
r3

=
n− 1

r
.

If f : R\{0} −→ R is of class C2(Rn \{0}), then the function composition
f(r) = f(r(x)) is of class C2(Rn \ {0}). Its gradient is given by

∇f(r) =
f ′(r)x

r

where f ′ denotes the derivative of f with respect to the variable r. The
Hessian of f(r) is given by

(Djkf(r))j,k =
f ′(r)

r
δj,k +

xjxk
r

(f ′(r)
r

)′
and in particular

∆f(r) =

n∑
k=1

f ′(r)

r
+
x2k
r2
(
f ′′(r)− f ′(r)

r

)
= f ′′(r) +

n− 1

r
f ′(r).
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Chapter 4

Vector fields on Rn

4.1 Derivatives of vector fields

Definition: vector field. Let U ⊂ Rn. A function v : U −→ Rm is called a
vector field on U .

Definition: partial derivatives of a vector field and Jacobian matrix.
Let U ⊂ Rn be open. A function v : U −→ Rm is called partially differentiable
at a ∈ U if the partial derivatives

Djvi(a) =
∂vi
∂xj

(a) := lim
h→0

vi(a + hej)− vi(a)

h
, 1 ≤ i ≤ m, 1 ≤ j ≤ n (4.1)

exist. The matrix m× n Jv(a) given by

(Jv(a))ij = (Djvi(a))i,j =

D1v1(a) · · · Dnv1(a)
· · · · · ·

D1vm(a) · · · Dnvm(a)

 (4.2)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n is called the Jacobian matrix of v at a ∈ U .

Definition: differentiable vector field. Let U ⊂ Rn be open. A function
v : U −→ Rm is said to be differentiable at a ∈ U if there exists a linear map
Dav(x) := Jv(a)x, Jv(a) ∈Mm,n such that

lim
h→ 0
h 6= 0

v(a + h)− v(a)−Dav(h)

||h||2
= 0. (4.3)

Summary. If v : U −→ Rm is differentiable at a ∈ U , then v is partially
differentiable and continuous at that point. Its Jacobian matrix gives the linear
mapping that approaches v in a neighborhood of a ∈ U .

Definition: vector field of class C1. Let U ⊂ Rn be open. A function v :
U −→ Rm is said to be of class C1(U) if the partial derivatives Djvi : U −→ R,
1 ≤ i ≤ m, 1 ≤ j ≤ n exist and are continuous in U . Extending the result of
Chapter 3 we conclude that a vector field of class C1(U) is differentiable:
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Theorem. Let U ⊂ Rn be open and v : U −→ Rm of class C1(U). Then for
each a ∈ U , v is differentiable. In particular,

v(a + h) = v(a) + Jv(a)h + o(h) (4.4)

and

lim
h→0

o(h)

||h||2
= 0.

Corollary. Let U ⊂ Rn be open. Any vector field v : U −→ Rm of class
C1(U) is continuous in U .

Examples.

1. If f : R→ R is differentiable at x, then Jf (x) = f ′(x) ∈M1,1(R).

2. Let k : R → Rn be a differentiable curve at t. Then Jk(t) = k̇(t) ∈
Mn,1(R).

3. If f : Rn → R is partially differentiable at x, then

Jf (x) =
(
D1f(x), . . . Dnf(x)

)
= (∇f(x))T ∈M1,n(R).

If f is differentiable at x, then dxf(h) = Jf (x) · h = 〈∇f(x),h〉.

4.1.1 The composition rule

Theorem 4.1. Let U1 ⊂ Rn, U2 ⊂ Rm be open, v : U1 −→ Rm and w : U2 −→
Rk vector fields of class C1(U1) respectively C1(U2) such that v(U1) ⊂ U2. Then
the vector field

w ◦ v : U1 −→ Rk

is of class C1(U1) and

Jw◦v(x) = Jw(v(x)) · Jv(x). (4.5)

Proof. Write the Taylor expansion of order 1.

Practical calculation. We see from (4.5) that the elements (Jw◦v(x))i,j can
be computed in an intuitive way:

∂ wi(v(x))

∂ xj
=

n∑
k=1

∂ vk
∂ xj

(x)
∂ wi
∂ vk

(v(x)) (4.6)

Examples. In the Chapter 3 we have already seen two examples of the com-
position rule:

1. Let f : Rn → R, k : R → Rn be of class C1. Then f ◦ k : R → R is of

class C1 and Jf◦k(t) =
d(f ◦ k)(t)

dt
= Jf (k(t)) · Jk(t) = 〈∇f(k(t)), k̇(t)〉.

2. Let f : R→ R, ρ : Rn → R be of class C1. Then f ◦ ρ : Rn → R is of class
C1 and Jf◦ρ(x) = Jf (ρ(x)) · Jρ(x) = f ′(ρ(x)) · ∇T ρ(x).
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Later we will study the use of the composition rule, for the changes of coor-
dinates.

4.2 Vector fields Rn −→ Rn

Introduction. Vector fields Rn −→ Rn have important applications: for ex-
ample in physics they describe magnetic and electric fields or the velocity field
of a fluid. Coordinate changes are also applications Rn −→ Rn.

Graphic representation. Let U ⊂ Rn. A vector field v : U −→ Rn is
represented graphically by an arrow (i.e. a vector) attached at each point x ∈
Rn. If the application v : U −→ Rn is a change of coordinates, we represent the
application v(x) by the level sets of n real valued functions vk : U −→ R.

sin(π(x+ y))e1 + cos(π(x− y))e2
x+y

4
√

4(x2+y2)
e1 + x−y

4
√

4(x2+y2)
e2

Level set of x+y
4
√

4(x2+y2)
and x−y

4
√

4(x2+y2)
respectively of

√
x2 + y2 and arctan( yx ).
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Divergence and Jacobian matrix. The Jacobian matrix Jv is a square
matrix. The trace of Jv is called the divergence of the field v, written div v:

divv(x) = 〈∇,v(x)〉 = tr (Jv(x)) =

n∑
k=1

Dkvk(x).

The determinant, det Jv(x), is called the Jacobian determinant of v at x ∈ Rn.

Remark. The columns of the Jacobian matrix of a vector field v(x) are the
partial derivatives of v(x), i.e.

Jv(x) =
(
D1v(x) · · · Dnv(x)

)
=
(
∂
∂x1

v(x) · · · ∂
∂xn

v(x)
)
.

Alternatively, the lines of the Jacobian matrix of a vector field v(x) are the
transpose of the gradients of the composants vx(x), i.e.

Jv(x) =


(∇v1(x))T

·
·
·

(∇vn(x))T

 .

Examples.

1. Let A ∈Mn,n(R) and v : Rn −→ Rn defined as the linear application

v(x) = Ax.

Then Jv(x) = A for all x ∈ Rn and div v(x) = tr (A). Its Jacobian deter-
minant is detA. If matrix A is invertible we can interpret the application
given by Ax as a change in coordinates. For example, let v : R2 −→ R2

be defined as

v(x, y) =

(
−y
x

)
=

(
0 −1
1 0

)(
x
y

)
Then

Jv(x, y) =

(
0 −1
1 0

)
2. Let U ⊂ Rn be open and f : U −→ R be a real-valued function of class
C2(U). Then the gradient of f defines a vector field v : U −→ Rn of class
C1(U) given by

v(x) = ∇f(x).

Then Jv(x) = J∇f (x) = Hess (f) and div v(x) = tr (Hess (f)). In other
words,

div (∇f(x)) = ∆f(x) (4.7)

3. Consider the application v : R2 −→ R2 defined as

v(r, φ) =

(
r cosφ
r sinφ

)
.
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This application gives the coordinate change from polar coordinates to
Cartesian coordinates by

x = v1(r, φ) = r cosφ

y = v2(r, φ) = r sinφ

Its Jacobian matrix is

Jv(r, φ) =

(
D1v1(r, φ) D2v1(r, φ)
D1v2(r, φ) D2v2(r, φ)

)
=

(
Drv1(r, φ) Dφv1(r, φ)
Drv2(r, φ) Dφv2(r, φ)

)
=

(
cosφ −r sinφ
sinφ r cosφ

)
and det(Jv)=r.

4. Let v : R3 −→ R3 be the transformatin defined as

v(r, θ, φ) =

r sin θ cosφ
r sin θ sinφ
r cos θ

 .

This transformation gives the coordinate change from spherical coordi-
nates to Cartesian coordinates by

x = v1(r, θ, φ) = r sin θ cosφ

y = v2(r, θ, φ) = r sin θ sinφ

z = v3(r, θ, φ) = r cos θ

Its Jacobian matrix is

Dv(r, φ) =

D1v1(r, θ, φ) D2v1(r, θ, φ) D3v1(r, θ, φ)
D1v2(r, θ, φ) D2v2(r, θ, φ) D3v2(r, θ, φ)
D1v3(r, θ, φ) D2v3(r, θ, φ) D3v3(r, θ, φ)


=

Drv1(r, θ, φ) Dθv1(r, θ, φ) Dφv1(r, θ, φ)
Drv2(r, θ, φ) Dθv2(r, θ, φ) Dφv2(r, θ, φ)
Drv3(r, θ, φ) Dθv3(r, θ, φ) Dφv3(r, θ, φ)


=

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0


and det(Jv) = r2 sin θ.

5. Let U = Rn \ {0} and v : U −→ Rn be the vector field defined as

v(x) =
x

r

where r = ||x||2. Note that x
r = ∇r. Therefore div v(x) = ∆r = (n−1)/r.
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Application of the product rule. Let U ⊂ Rn be open, and f : U −→ R
a real valued function of class C1(U) and v : U −→ Rn a vector field of class
C1(U). Then for each x ∈ Rn and each k = 1, . . . , n

Dk(fvk)(x) = f(x)Dkvk(x) +Dkf(x)vk(x)

and by summing on k = 1, . . . , n

div (fv(x)) = f(x) · div v(x) + 〈∇f(x),v(x)〉

or as a scalar product:

〈∇, fv〉 = f〈∇,v〉+ 〈∇f,v〉

4.2.1 Rotation

Definition. Let U ⊂ Rn be open and v : U −→ R3 a vector field of class
C1(U). We call rotation of v the vector field rot v : U −→ R3 defined as

rot v(x) =

D2v3(x)−D3v2(x)
D3v1(x)−D1v3(x)
D1v2(x)−D2v1(x)

 .

We can write the rotation of a vector field as the cross product of the operator
∇ with v:

rot v(x) = ∇× v(x)

Rotation of a gradient. Let f : U −→ R be a real valued function of class
C2(U). Then

rot grad f(x) = 0

or using the representation by the cross product,

∇×∇f(x) = 0.

This gives us the necessary condition for a vector field to be the gradient of a
real valued function. For the sufficient condition see Analysis 3.

Divergence of the rotation. Let v : U −→ R3 be a vector field of class
C2(U). Then

div (rot v(x)) = 0

using the representation with cross product and scalar product:

〈∇,∇× v(x)〉 = 0.

This gives us the necessary condition for a vector field to be the rotation of a
vector field. For the sufficient condition see Analysis 3.
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Example - A constant magnetic field. Let B > 0 and A the potential
given by

A(x, y, z) =

−By/2Bx/2
0

 = −By/2e1 +Bx/2e2.

We have

∇×A(x, y, z) =

 0
0
B

 = Be3.

If f is a real valued function of class C1, the rotation of A +∇f is always Be3.
This property is called gauge invariance.

Rotation in two dimensions. For a vector field v : R2 −→ R2 we can define
the rotation as the scalar

rot v(x) = D1v2(x)−D2v1(x)

If f : R2 −→ R is a real valued function of class C2(U), we have again

rot grad f(x) = 0

and with the cross product representation:

∇×∇f(x) = 0.

4.2.2 Invertibility of vector fields

Invertibility of vector fields. Let U, V ⊂ Rn be open. If the vector field
v : U −→ V is a bijective application, then the inverse application w = v−1 :
V −→ U exists and:

(w ◦ v)(x) = x, (v ◦w)(y) = y

for all x ∈ U and y ∈ V .

Inversibility - necessary condition. Let U ⊂ Rn be open, v : U −→ Rn a
vector field of class C1(U). If v is invertible, with w = v−1 the inverse function
of class C1, then

Jw◦v(x) = Idn = Jw(v(x)) · Jv(x) (4.8)

and
det Jw◦v(x) = 1 = det Jw(v(x)) · det Jv(x). (4.9)

Consequently, if v is invertible, then det Jv(x) 6= 0. Equality (4.9) allows us to
calculate the Jacobian matrix of the inverse field at v(x).

Example 1. The function v : R2 \ {(0, 0)} −→ R2 defined as

v(x, y) =
1√

x2 + y2

(
−y
x

)
is not invertible because

Dv(x, y) =

(
D1v1(x, y) D2v1(x, y)
D1v2(x, y) D2v2(x, y)

)
=

1√
x2 + y2

3

(
xy −x2
y2 −xy

)
and its Jacobian determinant is always zero.
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Example 2. Let v : R2 \ {(0, 0)} −→ R2 be defined as

v(x, y) =

(
x2 − y2

2xy

)
.

Its Jacobian matrix is

Jv(x, y) =

(
D1v1(x, y) D2v1(x, y)
D1v2(x, y) D2v2(x, y)

)
=

(
2x −2y
2y 2x

)
.

Its Jacobian determinant is 4x2 +4y2 > 0. The function v : R2 \{(0, 0)} −→ R2

is not bijective since v(x, y) = v(−x,−y). Therefore, v is not invertible in its
domain.

Locally invertible functions. The following theorem shows that a vector
field of class C1 is always invertible in the neighborhood of a point a if its
Jacobian determinant is non zero at a.

Inverse function theorem. Let U ⊂ Rn be open. If the Jacobian determi-
nant of a vector field v : U −→ Rn of class C1 is non zero at a ∈ U , then v is
locally invertible around the point a ∈ U with an inverse function of class C1.

Remark. An application of this theorem is the implicit function theorem.
We will apply the inverse function theorem later on to the change of coordinate
systems. Its proof is based on the fixed point Banach theorem given in Chapter
1.

SUPPLEMENT - Proof. Without loss of generality we can assume a = 0,
v(a) = 0 and Jv(a) = En where En represents the identity matrix (note that
the transformation u(x) = A(v(x + a) − v(a)) where A = Jv(a)−1 gives the
vector field with these properties). Consequently,

v(h) = h + o(h).

We define g(h) = h − v(h). Using the mean value theorem (see Chapter 3,
Equation (3.11)) applied to a ball Bδ(0) we obtain:

g(x2)− g(x1) =

∫ 1

0

Jg(k(t))(x2 − x1) dt

where k(t) = (1− t)x1 + tx2 is the segment between x1,x2 ∈ Bδ(0) (which is in
Bδ(0)). By the continuity of Jv(x) and so of Jg(x) with Jg(0) = 0 there exists a
δ > 0 such that ||Jg(x)||2 ≤ 1

2 in Bδ(0) and so for every xj , ||xj ||2 ≤ δ, j = 1, 2:

||g(x2)− g(x1)||2 ≤
1

2
||x2 − x1||2. (4.10)

In particular, g : Bδ(0) −→ Bδ/2(0) (take x2 = 0). For each y ∈ Bδ/2(0) we

define a function gy : Bδ(0) −→ Bδ(0) by

gy(x) = y + g(x) (4.11)

By (4.10) the function gy is a contraction on the complete metric space Bδ(0).
Therefore it has a unique fixed point x̄y ∈ Bδ(0). In other words, for each
y ∈ Bδ/2(0) there exists a unique x̄y ∈ Bδ(0) such that y = v(x̄y).
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Linear functions. For linear functions the condition detJv(x) 6= 0 is neces-
sary and sufficient: let A ∈Mn,n(R) and v : Rn −→ Rn be given by

v(x) = Ax.

Then Jv(x) = A for every v ∈ R and the field v is invertible if and only if the
matrix A is invertible. In this case,

w(x) = v−1(x) = A−1x.

A necessary and sufficient condition so that the matrix A is invertible is detA 6=
0.

The case n = 2. For a, b, c, d ∈ R let

A =

(
a b
c d

)
be a matrix such that detA = ad− bc 6= 0. Then

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Exemple 2 - continued. Again, we consider the function v : R2\{(0, 0)} −→
R2 given by

v(x, y) =

(
x2 − y2

2xy

)
.

By the inverse function theorem v is locally invertible around any point (a, b) ∈
R2 \ {(0, 0)}. To compute its inverse we need to solve the system

x2 − y2 = s, 2xy = t (4.12)

for (x, y). We are also trying to determine the maximum open domain on which
v is invertible. In the next part we will prove that the system has a unique
solution (x, y) if x > 0, that is that the function

v :]0,∞[×R −→ R2 \ {
(
s
t

)
: s ≤ 0, t = 0}

is bijective. In fact, the first equation of (4.12) implies x =
√
y2 + s since

x > 0 (the solution x = −
√
y2 + s is in this case not allowable). By the second

equation 2y
√
y2 + s = t, from which we obtain

4(y2)2 + 4sy2 − t2 = 0.

If t = 0, then y = 0 because x =
√
y2 + s > 0, so x =

√
s. If t 6= 0 only the

square root y2 =
−s+

√
s2 + t2

2
> 0 is allowable (since

−s−
√
s2 + t2

2
< 0).

The second equation of (4.12) implies that y and t have the same sign. We have
found:

v−1(s, t) =

(
x
y

)
=


√

s+
√
s2+t2

2√
−s+

√
s2+t2

2


46



if y > 0,

v−1(s, t) =

(
x
y

)
=


√

s+
√
s2+t2

2

−
√
−s+

√
s2+t2

2


if y < 0 and if t = 0, then s > 0

v−1(s, 0) =

(
x
0

)
=

√s
0

 .

This function represents the real and imaginary parts of the complex function
z = x+ iy 7→ z2 = x2− y2 + 2ixy. We have constructed the real and imaginary
part of z 7→

√
z when Re z > 0 (see Analysis 1, Chapter 1).

Examples - Calculation of inverse fields and Jacobian matrices . Let
v be a vector field of class C1 and locally invertible at a. To calculate the reverse
field we have to resolve the system y = v(x) for every x in the neighborhood of
a (see example above). The theorem states that there exists a unique solution
in the neighborhood of a. We write w(y) = v−1(y). We often only want to
determine the Jacobian matrix of the reverse field (see the Chapter on multiple
integrals). This can be done using the composition rule without determinating
the reverse field explicitly v−1(y): the Jacobian matrix of the reverse field w at
the point v(a) is the inverse of the Jacobian matrix Jv(a).

1. We consider the function v :]0,∞[×R −→ R2 given by

v(r, φ) =

(
r cosφ
r sinφ

)
.

This function gives us the change of coordinates between the polar coor-
dinate system and the Cartesian coordinate system if

x = v1(r, φ) = r cosφ

y = v2(r, φ) = r sinφ

Its Jacobian matrix is

Jv(r, φ) =

(
cosφ −r sinφ
sinφ r cosφ

)
Its Jacobian determinant det Jv(r, φ) = r is non-zero if r > 0. Then
v(r, φ) is locally invertible at every point (r, φ) ∈]0,∞[×R. The inverse
matrix of Jv(r, φ),(Jv(r, φ))−1 is given by

(Jv(r, φ))−1 =
1

r

(
r cosφ r sinφ
− sinφ cosφ

)
Let r > 0. Using the relation r =

√
x2 + y2, x/r = cosφ et y/r = sinφ

we obtain

(Jv(r, φ))−1 =
1

x2 + y2

(
x
√
x2 + y2 y

√
x2 + y2

−y x

)
= Jv−1(x, y)
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where v−1 is the inverse function of v. We can give an explicit representa-
tion of the inverse function (see Analysis 1, Chapter 1). Let V = {(r, φ) :
r > 0, φ ∈] − π, π[ } and W = R2 \ (] −∞, 0] × {0}). Then the function
v : V −→W is bijective and its inverse function is given by

v−1(x, y) =

( √
x2 + y2

2 arctan y

x+
√
x2+y2

)
.

2. We consider the function v : R2 −→ R2 given by

v(x, y) =

(
ey

x2

)
.

This function is locally invertible if x > 0 (or x < 0). Indeed,

Jv(x, y) =

(
0 ey

2x 0

)
is invertible and

(Jv(x, y))−1 =

(
0 1

2x
e−y 0

)
.

The explicit expression for the inverse function is

w(v1, v2)) =

(√
v2

ln v1

)
.

3. We consider the function v : R2 −→]0,∞[×]0,∞[ given by

v(x, y) =

(
ex+y

ex−y

)
.

Its Jacobian matrix

Jv(x, y) =

(
ex+y ex+y

ex−y −ex−y
)

is invertible and

(Jv(x, y))−1 =
1

2e2x

(
ex−y ex+y

ex−y −ex+y
)

=
1

2

(
e−(x+y) e−(x−y)

e−(x+y) −e−(x−y)
)

=
1

2

( 1
v1

1
v2

1
v1
− 1
v2

)
.

Note that v1v2 = e2x and v1/v2 = e2y so

w(v1, v2)) =
1

2

(
ln (v1v2)
ln(v1v2 )

)
=

(
ln v1 + ln v2
ln v1 − ln v2

)
.

4. Change of coordinate system between the spherical coordinate system and
the Cartesian coordinates system in R3: We consider the function

x = v1(r, θ, φ) = r sin θ cosφ

y = v2(r, θ, φ) = r sin θ sinφ

z = v3(r, θ, φ) = r cos θ
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Its Jacobian matrix is

Jv(r, φ, θ) =

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0


Therefore,

det Jv(r, θ, φ) = r cos θ cosφ r sin θ cosφ cos θ

+ r sin θ sinφ sin θ sinφ r sin θ

+ r sin θ sinφ r cos θ sinφ cos θ

+ sin θ cosφ r sin θ cosφ r sin θ

= r2 sin θ(cos2 φ cos2 θ + sin2 φ sin2 θ

+ cos2 φ sin2 θ + cos2 φ sin2 θ)

= r2 sin θ

When x > 0, y > 0, z > 0 the inverse function is given by

r = w1(x, y, z) =
√
x2 + y2 + z2

φ = w2(x, y, z) = arcsin
y√

x2 + y2

θ = w3(x, y, z) = arccos
z√

x2 + y2 + z2

4.2.3 Transformations of the Gradient and the Laplacian

Transformation of the Gradient in 2 dimensions. Let U, V ⊂ R2 and
v : U −→ V an invertible function of class C1(U) defined as

v(s, t) = (x, y).

Let f : R2 −→ R be a real valued function of class C1. Let us define g(s, t) =
f(x, y) = f(v(s, t)) and reciprocally f(x, y) = g(v−1(x, y)). We calculate the
Jacobian matrices of v(s, t) and v−1(x, y) as

Jv(s, t) =

(
Dsx Dtx
Dsy Dty

)
, respectively Jv−1(x, y) =

(
Dxs Dys
Dxt Dyt

)
Using the composition rule we have

∇x,yg(s, t) =

(
∂ s
∂ x

∂ g(s,t)
∂ s + ∂ t

∂ x
∂ g(s,t)
∂ t

∂ s
∂ y

∂ g(s,t)
∂ s + ∂ t

∂ y
∂ g(s,t)
∂ t

)
= (Jv−1(x, y))T∇s,tg(s, t)

= (Jv−1(v(s, t))T∇s,tg(s, t).

Consequently,

||∇x,yg(s, t)||22 = ||(Jv−1(v(s, t))T∇s,tg(s, t)||22
= ∇s,tg(s, t)TJv−1(v(s, t) · (Jv−1(v(s, t))T∇s,tg(s, t),

where

Jv−1(v(s, t) · (Jv−1(v(s, t))T =

(
||∇x,ys||22 〈∇x,ys,∇x,yt〉

〈∇x,ys,∇x,yt〉 ||∇x,yt||22.

)
is the metric tensor of the coordinates (s, t).
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Examples - polar coordinates. Let V = {(r, φ) : r > 0, φ ∈] − π, π[ } and
W = R2 \ (]−∞, 0]×{0}). Consider the bijective mapping v : V −→W defined
as (

x
y

)
= v(r, φ) =

(
r cosφ
r sinφ

)
.

Recall that its Jacobian matrix is

Jv(r, φ) =

(
cosφ −r sinφ
sinφ r cosφ

)
and that the inverse of Jv(r, φ),(Jv(r, φ))−1 is given as

(Jv(r, φ))−1 =
1

r

(
r cosφ r sinφ
− sinφ cosφ

)
=

1

x2 + y2

(
x
√
x2 + y2 y

√
x2 + y2

−y x

)
= Jv−1(x, y)

It follows that

Dxg(r, φ) = cosφDrg(r, φ)− sinφ

r
Dφg(r, φ)

Dyg(r, φ) = sinφDrg(r, φ) +
cosφ

r
Dφg(r, φ)

and

(Dxg(r, φ))2 + (Dyg(r, φ))2 = (Drg(r, φ))2 +
1

r2
(Dφg(r, φ))2.

The transformation formulas for partial derivatives

∂ g(r, φ)

∂ x
=
∂ r

∂ x

∂ g(r, φ)

∂ r
+
∂ φ

∂ x

∂ g(r, φ)

∂ φ

and
∂ g(r, φ)

∂ y
=
∂ r

∂ y

∂ g(r, φ)

∂ r
+
∂ φ

∂ y

∂ g(r, φ)

∂ φ
.

are calculated in a very intuitive way: the partial derivative with respect to the
variable x (respectively y) of a function g(r, φ) is calculated by summing the
partial derivatives with respect to x (resp. y) of the coordinates (r, φ) multiplied
by the partial derivative of g(r, φ) with respect to coordinates (r, φ). Note as
well that

(Dxg(r, φ))2 + (Dyg(r, φ))2 = (Drg(r, φ))2 +
1

r2
(Dφg(r, φ))2.

Transformation of the Gradient. Let U ⊂ Rn and v : U −→ Rn be an
invertible mapping of class C1(U). Set

x = v(s).

We write x(s) and s(x) for the reverse mapping v−1(x). Let g : U −→ R be a
function of class C1(U) of the coordinates s and set f(x) = g(s), that is to say,
f = g ◦ s. Then

Jf (x) = Jg(s)Js(x)
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and
Jf (x)Jf (x)T = Jg(s)Js(x)JTs (x)∇sg(s).

The elements of the metric tensor Js(x)JTs (x) are given as(
Js(x)JTs (x)

)
ij

= 〈∇xsi,∇xsj〉.

Trasformation of the Laplacian. Let U ⊂ Rn and v:U −→ Rn be an
invertible mapping of class C2(U). We set

x = v(s).

For a function g : U −→ R of class C2(U), defined as a function of the coordi-
nates s, we seek to calculate

∆xg(s) =

n∑
i=1

Dxixi
g(s)

As above we calculate
∂ g(s)

∂ xi
=

n∑
j=1

∂ sj
∂ xi

∂ g(s)

∂ sj

and

∂2 g(s)

∂ x2i
=

n∑
j=1

∂2 sj
∂ x2i

∂ g(s)

∂ sj

+

n∑
j=1

∂ sj
∂ xi

n∑
k=1

∂ sk
∂ xi

∂2 g(s)

∂ sjsk

Therefore

∆xg(s) =

n∑
j=1

∆xsj
∂ g(s)

∂ sj

+

n∑
j=1

n∑
k=1

〈∇xsj ,∇xsk〉
∂2 g(s)

∂ sjsk

Example - polar coordinates. Given V = {(r, φ) : r > 0, φ ∈]− π, π[ } and
W = R2 \ (] −∞, 0] × {0}). We consider the bijective mapping v : V −→ W
given by

v(r, φ) = (x, y) = (r cosφ, r sinφ).

and f : R2 −→ R a real valued function of class C1. We set g(r, φ) = f(x, y) =
f(v(r, φ)). We calculate the Laplacian of g directly

∂ g(r, φ)

∂ x
=
∂ r

∂ x

∂ g(r, φ)

∂ r
+
∂ φ

∂ x

∂ g(r, φ)

∂ φ

and

∂2 g(r, φ)

∂ x2
=
∂2 r

∂ x2
∂ g(r, φ)

∂ r
+

(
∂ r

∂ x

)2
∂2 g(r, φ)

∂ r2
+
∂ r

∂ x

∂ φ

∂ x

∂2 g(r, φ)

∂ φ∂ r

+
∂2 φ

∂ x2
∂ g(r, φ)

∂ φ
+

(
∂ φ

∂ x

)2
∂2 g(r, φ)

∂ φ2
+
∂ r

∂ x

∂ φ

∂ x

∂2 g(r, φ)

∂ φ∂ r
.

51



Therefore

∆x,yg(r, φ) =∆x,yr
∂ g(r, φ)

∂ r
+ ||∇x,yr||22

∂2 g(r, φ)

∂ r2

+ ∆x,yφ
∂ g(r, φ)

∂ φ
+ ||∇x,yφ||22

∂2 g(r, φ)

∂ φ2

+ 2〈∇x,yr,∇x,yφ〉
∂2 g(r, φ)

∂ φ∂ r

Using the Jacobian matrix we observe that

||∇x,yr||22 = 1, ||∇x,yφ||22 =
1

r2
, 〈∇x,yr,∇x,yφ〉 = 0

in addition

∆x,yr =
d2 r

d r2
+

1

r

d r

d r
=

1

r

and

∆x,yφ = − ∂

∂ x

y

r2
+

∂

∂ y

x

r2
= 0.

Consequently,

∆x,yg(r, φ) =
∂2 g(r, φ)

∂ r2
+

1

r

∂ g(r, φ)

∂ r
+

1

r2
∂2 g(r, φ)

∂ φ2
.
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4.3 Implicit functions

introduction. Let U ⊂ R2 be open and f : U −→ R be a function of class
C1(U). For C ∈ R consider the level set of f :

Nf (c) = {(x, y) ∈ R2 : f(x, y) = c}

To understand the form of Nf (c) we can seek to solve the equation f(x, y) = c
for y as a function of x ( or for x as a function of y). In the first case, Nf (c)
can be represented as the graph of a real valued function g(x) and y = g(x) is
its equation.

Example. Let f : R2 −→ R be defined as

f(x, y) = x2 + ey − 1.

To determine the form of Nf (0) we try to solve the equation x2 + ey − 1 = 0 for
y as a function of x. A solution exists only for −1 ≤ x ≤ 1 and we find that

y = ln(1− x2).

Therefore Nf (0) is given by the graph of the function

g(x) = ln(1− x2).

The function g is differentiable at all x ∈]− 1,+1[ and satisfies the equation

x2 + eg(x) − 1 = 0.

We can use this equation to calculate the derivative of g(x). This technique is
called implicit differentiation. By computing the derivative with respect to x,
we get

2x+ g′(x)eg(x) = 0

i.e.

g′(x) = − 2xe−g(x) = − 2x

1− x2

Note that D1f(x, y) = 2x and D2f(x, y) = ey. Hence,

g′(x) = − D1f(x, g(x))

D2f(x, g(x))
.

This relation is verified in the general case:

Implicit function theorem. Let U ⊂ R2 be open and f : U −→ R be a
function of class Ck(U), k ≥ 1, such that f(a, b) = 0 for a point (a, b) ∈ U and
D2f(a, b) 6= 0. Then there exists a neighborhood Bε(a) and a unique function
g : Bε(a) −→ R such that

1. The graph of g is in U : Gg = {(x, g(x)) : x ∈ Bε(a)} ⊂ U .

2. g(a) = b

3. f(x, g(x)) = 0 for every x ∈ Bε(a).
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4. The function g is of class Ck(Bε(a)) and

g′(x) = − D1f(x, g(x))

D2f(x, g(x))

for every x ∈ Bε(a). In particular,

g′(a) = − D1f(a, b)

D2f(a, b)
.

Remark. The theorem states that when close to the point (a, b) ∈ R2, we can
solve the equation f(x, y) = 0 (or more generally f(x, y) = c for a c ∈ R) by
rewriting y as a function of the variable x. In other words, the function y = g(x)
is given implicitly by the equation

f(x, g(x)) = 0.

In a neighborhood of the point (a, b) ∈ R2, the level set Nf (0) is given by the
graph of g.

Remark. The relation

g′(x) = − D1f(x, g(x))

D2f(x, g(x))
(4.13)

is verified in the neighborhood of a since the continuity of the derivatives implies
the existence of a neighborhood of (a, b) such that D2f(x, y) 6= 0.

Proof. We define a mapping v : U −→ R2 of class C1 by

v(x, y) =

(
s
t

)
:=

(
x

f(x, y)

)
Its Jacobian matrix is given by

Jv(x, y) =

(
∂s
∂x

∂s
∂y

∂t
∂x

∂t
∂y

)
=

(
1 0

∂f(x,y)
∂x

∂f(x,y)
∂y

)
.

The Jacobian determinant is detJv(x, y) =
∂f(x, y)

∂y
. At (a, b):

v(a, b) =

(
a
0

)
, det Jv(a, b) = D2f(a, b) 6= 0.

Consequently, v is invertible in a neighborhood of (a, b) and the reverse mapping
is given by: (

x
y

)
=

(
x(s, t)
y(s, t)

)
=

(
s

y(s, t)

)
.

Set g(s) := y(s, 0). By construction, g is of class C1 and its graph is in U . We
have g(a) = b and (

s
0

)
= v(x(s, 0), y(s, 0))

(
s

f(s, g(s))

)
therefore 0 = f(s, g(s)). Formula (4.13) for g′(x) follows the composition rule.
If f is of class Ck with k > 1, the right-hand side of the equation (4.13) is of
class C1 so g′ is of class C1 and therefore g is of class C2. We establish an
identity for g′′(x) etc. (Equation (4.14) below) going up to order k.
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Example. The equation x sinx− ey sin y = 0 has a unique solution y = g(x)
of class C1 (even C∞) in the neighborhood of (x, y) = (0, 0). Actually, f(x, y) =
x sinx− ey sin y satisfies all the hypotheses of the implicit function theorem. In
particular, f(0, 0) = 0 and D2f(0, 0) = −1.

Generalization of the implicit function theorem. Let U ⊂ Rn be open
and f : U −→ R a function of class Ck(U), k ≥ 1, such that f(a1, . . . , an−1, an) =
0 for a point (a1, . . . , an−1, an) ∈ U and Dnf(a1, . . . , an−1, an) 6= 0. Then there
exists neighborhoodBε(a) ⊂ Rn−1 and a unique function g : Bε(a1, . . . , an−1) −→
R such that

1. The graph of g is in U : Gg = {(x1, . . . , xn−1, g(x1, . . . , xn−1)) : x ∈
Bε(a1, . . . , an−1)} ⊂ U .

2. g(a1, . . . , an−1) = an

3. f((x1, . . . , xn−1, g(x1, . . . , xn−1))) = 0 for all (x1, . . . , xn−1) ∈ Bε(a1, . . . , an−1).

4. The function g is of class Ck(Bε(a1, . . . , an−1)) and

Dig(x1, . . . , xn−1) = − Dif(x1, . . . , xn−1, g(x1, . . . , xn−1))

Dnf(x1, . . . , xn−1, g(x1, . . . , xn−1))

for every x ∈ Bε(a).

Example. Show that close to the point (1, 2, 3),

6x4 + xyz + y4 − y2z2 + 8 = 0

is a surface in R3. Find the equations of the tangent plane to this surface at
the point (1, 2, 3). We set

f(x, y, z) = 6x4 + xyz + y4 − y2z2 + 8.

The function f is of class C1(R3) (and even of class Ck(R3) for any k ∈ N) and
its partial derivatives are

D1f(x, y, z) = 24x3+yz, D2f(x, y, z) = xz+4y3−2yz2, D3f(x, y, z) = xy−2y2z

we have f(1, 2, 3) = 0 and D3f(1, 2, 3) = −22 6= 0. Therefore there exists a
unique function g(x, y) defined in the neighborhood of (1,2) such that

g(1, 2) = 3, f(x, y, g(x, y)) = 0.

The equation of the tangent plane is given by

z = g(1, 2) + 〈∇g(1, 2),

(
x− 1
y − 2

)
〉

with

D1g(1, 2) = − D1f(1, 2, g(1, 2))

D3f(1, 2, g(1, 2))
= − D1f(1, 2, 3)

D3f(1, 2, 3)

and

D2g(1, 2) = − D2f(1, 2, g(1, 2))

D3f(1, 2, g(1, 2))
= − D2f(1, 2, 3)

D3f(1, 2, 3)
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we obtain that

(z − 3)D3f(1, 2, 3) = −D1f(1, 2, 3)(x− 1)−D2f(1, 2, 3)(y − 2)

i.e.

0 = D1f(1, 2, 3)(x−1)+D2f(1, 2, 3)(y−2)+(z−3)D3f(1, 2, 3) = 〈∇f(1, 2, 3),

x− 1
y − 2
z − 3

〉
This equation confirms the geometric intuition that the gradient of f is orthog-
onal to the tangent plane of the surface Nf (0). Therefore

z =
19

11
+

15x

11
− y

22

is the equation of the tangent plane.

Example. If D2f(a, b) = 0 the function g(x) may exist but it is not necessarily
unique. Let f : R2 −→ R be defined as

f(x, y) = x2 + y4 − 1.

Let (a, b) = (1, 0). The equation x2 + y4−1 = 0 for y as a function of x has two
solutions for −1 ≤ x ≤ 1 and we find

y =

{
4
√

1− x2 if y ≥ 0,

− 4
√

1− x2 if y < 0.

In addition, the function

g(x) =
4
√

1− x2

is not differentiable at x = 1. However, for the point (a, b) = (0, 1) the implicit
function theorem can be used and gives the unique function

g(x) =
4
√

1− x2

differentiable in the neighborhood of a and can be extended for any x ∈]−1,+1[
and is differentiable on this interval with derivative

g′(x) = − D1f(x, g(x))

D2f(x, g(x))
= − x

2 4
√

(1− x2)3
.

Derivatives of higher order. Consider the implicit function theorem for
U ⊂ R2 an open set and a function f : U −→ R of class Ck(U), k ≥ 2. If the
hypotheses of the theorem are satisfied, then there exists a function g(x) such
that f(x, g(x)) = 0. The derivative of g(x) verifies the equation

D1f(x, g(x)) + g′(x)D2f(x, g(x)) = 0

Let us take the derivative of this identity, we obtain

D11f(x, g(x))+2g′(x)D12f(x, g(x))+g′′(x)D2f(x, g(x))+g′(x)2D22f(x, g(x)) = 0
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i.e.

g′′(x) = − D11f(x, g(x)) + 2g′(x)D12f(x, g(x)) + g′(x)2D22f(x, g(x))

D2f(x, g(x))
. (4.14)

In particular, if g′(a) = 0 (horizontal tangent at a), then

g′′(a) = − D11f(a, g(a))

D2f(a, g(a))
= − D11f(a, b)

D2f(a, b)
.

We can then calculate the successive derivatives of the implicit function g(x) at a
without determining g(x) and we can therefore calculate its linear approximation
at x = a.

4.3.1 Implicit differentiation

The technique we used above to compute the derivative of a function is called
implicit differentiation. It can for example be applied to variable substitution
to calculate the partial derivatives without explicitly reversing the substitution.

Example - polar coordinates. Given V = {(r, φ) : r > 0, φ ∈]− π, π[ } and
W = R2 \ (]−∞, 0]×{0}). Consider the bijective mapping v : V −→W defined
as

v(r, φ) = (x, y) = (r cosφ, r sinφ).

We will calculate the partial derivatives
∂r

∂x
,
∂r

∂y
,
∂φ

∂x
,
∂φ

∂y
with the implicit dif-

ferentiation technique using the partial derivatives with respect to the variable
x and y in the equations of the substitution x = r cosφ et y = r sinφ. We obtain
four linear equations with the four partial derivatives we want to determine:

1 = cosφ
∂r

∂x
− r sinφ

∂φ

∂x

0 = cosφ
∂r

∂y
− r sinφ

∂φ

∂y

0 = sinφ
∂r

∂x
+ r cosφ

∂φ

∂x

1 = sinφ
∂r

∂y
+ r cosφ

∂φ

∂y
.

This yields

∂r

∂x
= cosφ,

∂r

∂y
= sinφ,

∂φ

∂x
=
− sinφ

r
,
∂φ

∂y
=

cosφ

r
.
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4.4 Addendum - a few formulas

Let f, g : Rn −→ R, and u,v,w : Rn −→ Rn smooth enough.

∇(fg) = f∇g + g∇f, (4.15)

div (fu) = 〈∇f,u〉+ f div u, (4.16)

div (v ×w) = 〈w,∇× v〉 − 〈v,∇×w〉, (n = 3) (4.17)

∇× (fu) = ∇f × u + f∇× u, (n = 2, 3). (4.18)

∆(fg) = f∆g + 2〈∇f,∇g〉+ g∆f, (4.19)

∆ ln(f2) = 2
f∆f − 〈∇f,∇f〉

f2
, f 6= 0. (4.20)

〈v,∇〉w = Jw · v, (4.21)

∇(〈v,w〉) = JTv ·w + JTw · v. (4.22)

∇×∇f = 0 (4.23)

div(∇× f) = 0 (4.24)
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Chapter 5

Local extrema

As in the case of single variable functions, it is important for many applications
to determine the local extrema of a function f : Rn −→ R.

5.1 Extrema and stationary points

Definition - Local extremum. A function f : Rn −→ R reaches a local
maximum at a ∈ Rn if there exists a ball Bδ(a) such that f(x) ≤ f(a) for any
x ∈ Bδ(a). The maximum is called a strict maximum if f(x) < f(a) for x 6= a.
A function f : Rn −→ R reaches a local minimum at a ∈ Rn if there exists a
ball Bδ(a) such that f(x) ≥ f(a) for any x ∈ Bδ(a). The minimum is called a
strict minimum if f(x) > f(a) for x 6= a. We say that f has a local extremum
at a ∈ Rn if f has a local maximum or a local minimum at a ∈ Rn.

Definition - Stationary point. Let f : Rn −→ R be differentiable at a ∈ Rn
with ∇f(a) = 0, a is called a stationary point or a critical point of f .

Definition - Saddle point. A stationary point a ∈ Rn is called a saddle point
of f if there exists two vectors v1,v2 ∈ Rn such that the function t 7→ f(a+tv1)
has a strict local maximum at t = 0 and t 7→ f(a + tv2) has a strict local
minimum at t = 0.

Theorem 5.1. - necessary condition for local extrema. Let f : Rn −→ R
be differentiable at a ∈ Rn. If f has a local extremum at a then a is a stationary
point of f , that is to say ∇f(a) = 0.

Proof. Without loss of generality we can suppose that f has a local maximum
at a. Let Bδ(a) be such that f(x) ≤ f(a) for any x ∈ Bδ(a). Then for any
a + h ∈ Bδ(a) the function g : [−1, 1] −→ R defined as g(t) = f(a + th) is
differentiable at t = 0 and and has a local maximum at t=0, hence

g′(0) = 〈∇f(a),h〉 = 0.

for any h ∈ Bδ(0) and therefore ∇f(a) = 0.
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5.2 Quadratic forms

Let A ∈ Mn,n(R) be a symmetric matrix and q : Rn −→ R a quadratic form
defined as

q(x) =
1

2
〈Ax,x〉.

The function q(x) is of class C2 with

∇q(x) =

n∑
k=1

〈Ax, ek〉 ek = Ax

and
Hess (q)(x) = A.

For any x,a ∈ Rn the quadratic form can be represented as

q(x) = q(a) + 〈∇q(a),x− a〉+
1

2
〈Hess (q)(a)(x− a),x− a〉.

In particular, if a is a stationary point of q(x), i.e. Aa = 0, then

q(x) = q(a) +
1

2
〈Hess (q)(a)(x− a),x− a〉.

The equation Aa = 0 implies that the point a = 0 is always a stationary
point. The quadratic form q(x) has stationary points a 6= 0 if and only if 0
is an eigenvalue of the matrix A. To study the nature of stationary points we
introduce the following definition.

Definition. Let A ∈Mn,n(R) be a symmetric matrix. A is said to be positive-
semidefinite (respectively positive-definite) if the quadratic form

q(x) =
1

2
〈Ax,x〉

associated with it satisfies q(x) ≥ 0 (respectively q(x) > 0) for any x 6= 0. A
is said to be negative-semidefinite (respectively negative-definite) if q(x) ≤ 0
(respectively q(x) < 0) for any x 6= 0. The matrix A is said to be indefinite if
A is neither negative-semidefinite nor positive-semidefinite.

Link with the eigenvalues. For any symmetric matrix A ∈ Mn,n(R) there
exists an orthogonal matrix P such that P−1AP = D where D is the diagonal
matrix

D = diag(λ1, . . . , λn) =

n∑
i=1

λiEii and λ1 ≤ . . . ≤ λn.

λ1, . . . , λn are the eigenvalues of A. We have the following equivalences:

A ≥ 0 ⇔ 0 ≤ λ1 ≤ . . . ≤ λn
A > 0 ⇔ 0 < λ1 ≤ . . . ≤ λn
A ≤ 0 ⇔ λ1 ≤ . . . ≤ λn ≤ 0
A < 0 ⇔ λ1 ≤ . . . ≤ λn < 0

A indefinite ⇔ λ1 < 0 < λn

and
λ1〈x,x〉 ≤ 〈Ax,x〉 ≤ λn〈x,x〉

for any x ∈ Rn.
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Example. In the case where n = 2, let A ∈ M2,2(R) be a symmetric matrix
such that

A =

(
p q
q r

)
.

Then trA = p + r = λ1 + λ2 and detA = pr − q2 = λ1λ2. Consequently, for a
matrix A ∈M2,2(R),

1. A ≥ 0 if and only if detA ≥ 0 and trA ≥ 0.

2. A > 0 if and only ifdetA > 0 and trA ≥ 0.

3. A ≤ 0 if and only if detA ≥ 0 and trA ≤ 0.

4. A < 0 if and only if detA > 0 and trA ≤ 0.

5. A is indefinite if and only if detA < 0.

Local extrema - sufficient conditions.

1. If A < 0, then 0 is a strict local maximum of q(x).

2. If A > 0, then 0 is a strict local minimum of q(x).

3. If A is indefinite, then 0 is a saddle point of q(x).

Remark. In Chapter 5.3 we will extend these three conditions to stationary
points of real valued functions of class C2 where the matrix A corresponds to
the Hessian matrix of these stationary points.

Remark. We have already seen that the quadratic form q(x) has a stationary
point a 6= 0 if and only if 0 is an eigenvalue of A. Consequently, if A < 0
(respectively A > 0), a = 0 is the only stationary point of q(x) and therefore,
the quadratic form has a global extremum at 0.

Remark. For quadratic forms, the weaker condition A ≤ 0 (respectively
A ≥ 0) implies that A has a local maximum (respectively a local minimum).
However, for general functions these conditions are not sufficient.

5.3 Finite expansion

Theorem 5.2. - finite expansion of order 2. Let U ⊂ Rn be open and
f : U −→ R of class C2(U). Then, for any a,a + h ∈ U :

f(a + h) = f(a) + 〈∇f(a),h〉+
1

2
〈(Hess f)(a)h,h〉+ o(||h||22).

Proof. For a fixed h, consider the function g : [0, 1] −→ R of class C2 defined as

g(t) = f(a + th)
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From the theorem of finite expansions for single variable functions, there exists
θ ∈ [0, 1] such that

g(1) = g(0) + g′(0) +
g′′(0)

2
+R2(1)

and

R2(1) =
g′′(θ)− g′′(0)

2
(1− 0)2 =

g′′(θ)− g′′(0)

2
.

By definition of g, g(0) = f(a) and g(1) = f(a + h). Next, calculate the
derivatives of the function g(t):

g′(t) = 〈∇f(a + th),h〉 g′(0) = 〈∇f(a),h〉

g′′(t) = 〈(Hess f)(a + th)h,h〉

and

o(||h||22) =
1

2
〈((Hess f)(a + θh)− (Hess f)(a))h,h〉.

because Hess f is continuous.

Remark. We can obtain the limited expansion of order k, k > 2 using the
function g(t).

5.4 Local extreme values - sufficient conditions

The theorem of finite expansions enables us to formulate sufficient conditions
for a stationary point to be a local extrema.

Theorem 5.3. - sufficient conditions. Let f : Rn −→ R be a function of
class C2(Rn). Let a ∈ Rn be a stationary point of f , i.e. ∇f(a) = 0 and we
note A = (Hess f)(a).

1. If A < 0, then a is a strict local maximum of f(x).

2. If A > 0, then a is a strict local minimum of f(x).

3. If A is indefinite, then a is a saddle point of f(x).

This result allows us to find the relative extrema of a function in Rn or inside
a given region. When studying the extrema on a closed set, one must study the
behaviour on the edge of the set. We remind the following result for continuous
functions (Chapter 1):

Theorem. Let C ⊂ Rn be closed and bounded and f : Rn −→ R a continuous
function on C. Then f reaches its maximum and minimum in C.

Remark. For a continuous function f : Rn −→ R on the closed and bounded
set C of class Ck(U) with U the interior of C, the extrema are either the
stationary points in the interior U or on the edge ∂U .

62



Example - problem 1. Determine the nature of the stationary points of the
function

f(x, y) = x3 − 6x2 +
1

8
y3 − 6y.

The stationary points are determined by the condition ∇f = 0, i.e.

3x2 − 12x = 0 and
3

8
y2 − 6 = 0.

There are four stationary points of f(x, y):

P1 = (0, 4), P2 = (0,−4), P3 = (4, 4), P4 = (4,−4)

We have

Hess (f)(x, y) =

(
6x− 12 0

0 3
4y

)
.

and therefore

Hess (f)(P1) =

(
−12 0

0 3

)
, f has a saddle point atP1, f(P1) = −16

Hess (f)(P2) =

(
−12 0

0 −3

)
, f has a strict local maximum atP2, f(P2) = 16

Hess (f)(P3) =

(
12 0
0 3

)
, f has a strict local minimum atP3, f(P3) = −48

Hess (f)(P4) =

(
12 0
0 −3

)
, f has a saddle point atP4, f(P4) = −16

f(x, y) = x3 − 6x2 + 1
8y

3 − 6y
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Example - problem 2. Give the maximum and the minimum of f(x, y) (from
the previous example) on the rectangle R = [−2, 5]× [0, 6].
The stationary points P1 (saddle point) and P3 (strict local minimum) are in
R. We need to study the function f on the edge of R which consists of four
segments.

1. S1 = {−2} × [0, 6]. The function f(x, y), constrained to S1, is given by

f |S1(x, y) = f(−2, y) = f1(y) =
1

8
y3 − 6y − 32, 0 ≤ y ≤ 6

We have f ′1(y) = 3
8y

2 − 6. f1(y) has a stationary point y1 = 4 in [0, 6]
(strict local minimum). We also need to compute f1(y) on the edge of
[0, 6], i.e at y = 0 and y = 6. We find

f1(0) = −32, f1(4) = −48, f1(6) = −41.

2. S2 = [−2, 5]× {0}. The function f(x, y), constrained to S2, is given by

f |S2
(x, y) = f(x, 0) = f2(x) = x3 − 6x2, −2 ≤ x ≤ 5

We have f ′2(x) = 3x2−12x. f2(x) has stationary points at x1 = 0 and x2 =
4 in [−2, 5] (strict local maximum and strict local minimum respectively).
We also need to compute f2(x) on the edge of [0− 2, 5], i.e at x = −2 and
x = 5. We find

f2(−2) = −32, f2(0) = 0, f2(4) = −32, f2(5) = −25.

3. S3 = {5} × [0, 6]. The function f(x, y), constrained to S3, is given by

f |S3
(x, y) = f(5, y) = f3(y) =

1

8
y3 − 6y − 25, 0 ≤ y ≤ 6

Note that f3(y) = f1(y) + 7. So f3(y) has the same stationary point and

f3(0) = −25, f3(4) = −41, f3(6) = −34.

4. S4 = [−2, 5]× {6}. The function f(x, y), constrained to S4, is given by

f |S4
(x, y) = f(x, 0) = f4(x) = x3 − 6x2 − 9, −2 ≤ x ≤ 5

Note that f4(x) = f2(x)−9. f4(x) has the same stationary points as f2(x)
: x1 = 0 and x2 = 4 in [−2, 5] and

f2(−2) = −41, f2(0) = −9, f2(4) = −41, f2(5) = −34.

Consequently, max f |R = 0 is reached at (0, 0) and min f |R = −48 is reached at
P3 and at (−2, 4).
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f(x, y) = x3 − 6x2 + 1
8y

3 − 6y on the rectangle R.

The case with eigenvalue 0 - Examples. If one of the eigenvalues of the
Hessian matrix is zero, the theorem of the sufficient conditions is not applicable
any more. If n ≥ 3 and if we have one positive eigenvalue and one negative
eigenvalue then the stationary point is a saddle point (by the definition of a
saddle point). For example, let

f(x, y, z) = x2 + y4 − z2.

Then,

∇f(x, y, z) =

 2x
4y3

−2z

 ,∇f(0, 0, 0) = 0, Hess (f)(0, 0, 0) =

2 0 0
0 0 0
0 0 −2

 .

The Hessian matrix has the eigenvalues 2, 0,−2. The function f has a saddle
point at 0 since f(x, 0, 0) > 0 for all x 6= 0 and f(0, 0, z) < 0 for all z 6= 0.
If an eigenvalue of the Hessian matrix at a stationary point is zero and the
others don’t have opposite signs the situation is more complex. For example,
the function g(x, y) = x2 + y4 has a strict local minimum (and even global) at
(0, 0). The eigenvalues of the Hessian matrix at this stationary point are 0, 2
and the function h(x, y) = x2 − y4, which has the same stationary point and
the same Hessian matrix at this point, has a saddle point at (0, 0).
Finally, let f(x, y) = x2 + y4 + 2xy2. We have

∇f(x, y) =

(
2(x+ y2)
4(y3 + xy)

)
, Hess (f)(x, y) =

(
2 4y
4y 12y2 + 4x

)
.
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The stationary points are given by the equation x = −y2 and the Hessian matrix
at these points is

Hess (f)(−y2, y) =

(
2 4y
4y 8y2

)
.

It has eigenvalues 0 and 2 + 8y2 > 0. We can not determine the nature of
the stationary points using the Hessian matrix. But noticing that f(x, y) =
(x+ y2)2 ≥ 0 we find that these points are local minimums (but not strict local
minimums as the curve of equation x = −y2 is a curve of the level set of f).

f(x, y) = (x+ y2)2
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5.5 Extrema of a function under constraints

To analyze the function on the edge of a rectangle (or a triangle) we have
substituted the equation of the edge into the function that we are studying. We
often look for the extrema of a function h(x) = h(x1, . . . , xn) on a given set by
solving the equation h(x) = 0. If we can solve this equation for a real variable,
for example xn = g(x1, . . . , xn−1), we can substitute this expression and study
the function of n− 1 real variables given by

h̃(x1, . . . , xn−1) = h(x1, . . . , xn−1, g(x1, . . . , xn−1))

by using the method presented in the previous section. However, it is often im-
possible to solve the equation h(x) = 0 for a real variable or such a substitution
makes the function h̃ too complex to easily calculate the derivatives. For these
situations, there exists another method that follows the idea of substitution and
applies the implicit function theorem.

Theorem 5.4. - The method of Lagrange multipliers I. Let U ⊂ Rn be
open. Let h, f : U −→ R be of class C1(U) and

M = {x ∈ U : f(x) = 0}.

Let a ∈M such that ∇f(a) 6= 0 and h|M has a local extremum at a. Then there
exists a λ ∈ R such that

∇h(a) + λ∇f(a) = 0.

Proof. We can assume that Dnf(a) 6= 0. By the implicit function theorem there
exists a unique function g defined on a neighborhood V of (a1, ..., an−1) ∈ Rn−1
such that for all (x1, ..., xn−1) ∈ V :

f(x1, ..., xn−1, g(x1, ..., xn−1)) = 0.

and
Dif(a) +Dig(a1, ..., an−1)Dnf(a) = 0

for any i = 1, ..., n− 1. We consider the function

H(x1, ..., xn−1) = h(x1, ..., xn−1, g(x1, ..., xn−1)).

By assumption, the function H has a local extremum at (a1, ..., an−1). So
DiH(a1, ..., an−1) = 0 for any i = 1, ..., n. The partial derivatives of H at
(a1, ..., an−1) verify the relation

DiH(a1, ..., an−1) = Dih(a) +Dig(a1, ..., an−1)Dnh(a) = 0.

If we set

λ = −Dnh(a)

Dnf(a)

then for any i = 1, ..., n− 1, n:

Dih(a) + λDif(a) = 0.
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Remark. The number λ is called the Lagrange multiplier.

Practical Calculus I. If M is bounded, then the extrema of h exist and we
find them as follows: solve the system of equations (n+ 1 equations)

∇h(a) + λ∇f(a) = 0, f(a) = 0 (5.1)

for the n+ 1 variables a, λ. Then compare the values of h at these points. Note
that the theorem does not guarantee the existence of extrema.

Practical Calculus II and discussion of the hypotheses of the theorem.
If ∇f(a) = 0 for an a ∈ M , the extrema of h|M are not necessarily among the
solutions of (5.1). In other words, a local extremum of h|M can be such a point
a. For example, consider f(x, y) = x3 − y7 and h(x, y) = x + y2. Then, by
substitution

h|M (x, y) = y|y| 43 + y2 > 0 if − 1 < y, y 6= 0,

and h(0, 0) = 0. Consequently, h|M has a strict local minimum at (0, 0) ∈ M .
If we try applying the method of Lagrange multipliers by solving the system
(5.1), we need to solve the equations

1 + 3λx2 = 0, 2y − 7λy6 = 0, x3 − y7 = 0.

Observe that (0, 0) is not a solution (this system does not have any solution
!). So the method of Lagrange multipliers does not function at the stationary
points of f .

We can extend the method of Lagrange multipliers to restrictions on different
sets Mk by applying the general version of the implicit function theorem:

Theorem 5.5. - Method of Lagrange multipliers II. Let U ⊂ Rn be open.
Let h, fk : U −→ R, k = 1, ..., p be of class C1(U) and

Mk = {x ∈ U : fk(x) = 0}.

Let a ∈M1∩, ...,∩Mp such that the vectors ∇fk(a) are linearly independent and
h|M1∩,...,∩Mp

has a local extremum at a. Then there exists λ1, ..., λp ∈ R such
that

∇h(a) +

p∑
k=1

λk∇fk(a) = 0.

Example. Give the maximum and the minimum of the function

h(x, y) = x3 − 6x2 +
1

8
y3 − 6y

on M = {(x, y) ∈ R2 : x2 + (y − 2)(y − 6) = 0}.
First, note that M is the circle of centre (0, 4) and of radius 2. M is closed
and bounded. So, the function h reaches its maximum and its minimum in M .
Furthermore, with f(x, y) = x2 + (y − 2)(y − 6) we have

∇f(x, y) =

(
2x

2(y − 4)

)
6=
(

0
0

)
if

(
x
y

)
∈M.
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Indeed, ∇f(x, y) is zero if and only if x = 0 and y = 4, but (0, 4) /∈M . We can
apply the theorem, i.e. the minimum and the maximum of h(x, y) are among
the solutions of this system of equations

∇h(x, y) + λ∇f(x, y) = 0, f(x, y) = 0.

Written explicitly, the system of equations is:

x(3x− 12 + 2λ) = 0

(y − 4)(
3

8
(y + 4) + 2λ) = 0

x2 + (y − 2)(y − 6) = 0

Let’s analyze this system: using the first equation, we have that either x = 0
or 3x − 12 + 2λ = 0. If x = 0, then by the third equation y = 2 (and so
λ = − 9

8 , but it is not necessary to compute λ) or y = 6 (and so λ = − 16
8 ).

If y = 4, then by the third equation x = 2 (and so λ = 3, but again it is not
necessary to compute λ) or x = −2 (and so λ = 9). This leaves the case where
3x− 12 + 2λ = 3

8 (y + 4) + 2λ = 0 so y = 8x− 36 which has no solutions in M .
We have the four solutions:

(x, y) = (0, 2) and h(0, 2) = −11

(x, y) = (0, 6) and h(0, 6) = −9

(x, y) = (−2, 4) and h(−2, 4) = −48

(x, y) = (2, 4) and h(2, 4) = −32

So minh|M = −48 and maxh|M = −9.

h(x, y) = x3 − 6x2 + 1
8y

3 − 6y in M (blue circle). At the extrema, the level
lines are tangent to the circle.
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Example. Find the maximum and the minimum of the function

h(x, y, z) = x+ y + z

under the conditions f1(x, y, z) := x2+y2−2 = 0 and f2(x, y, z) := x+z−1 = 0.
The set

M := {(x, y, z) ∈ R3 : f1(x, y, z) = f2(x, y, z) = 0}

is closed and bounded. Consequently, the function h(x, y, z) reaches its maxi-
mum and its minimum in M . The vectors

∇f1(x, y, z) =

2x
2y
0

 ,∇f2(x, y, z) =

1
0
1


are linearly indepenant in M . The minimum and the maximum of h(x, y, z)
find themselves among the solutions of the system of equations

∇h(x, y, z) + λ1∇f1(x, y, z) + λ2∇f2(x, y, z) = 0, f1(x, y, z) = f2(x, y, z) = 0.

Written explicitly, the system of equations is:

1 + 2λ1x+ λ2 = 0

1 + 2λ1y = 0

1 + λ2 = 0

x2 + y2 − 2 = 0

x+ z − 1 = 0

Let’s analyze this system: the first and third equation give us 2λ1x = 0 i.e.
either x = 0 or λ1 = 0. Recalling the second equation, the last case is impossible.
So x = 0. The condition f1(x, y, z) = 0 implies that y = ±

√
2 and f1(x, y, z) = 0

implies that z = 1. Furthermore,

h(0,
√

2, 1) = 1 +
√

2 and h(0,−
√

2, 1) = 1−
√

2.

So minh|M = 1−
√

2 and maxh|M = 1 +
√

2.

Remark. For the last example there is a quicker solution: we can directly
inject the relation z = 1− x into h and look for the extrema of h̃(x, y) = y + 1
under the constraint x2 + y2 = 2 to obtain the solution without calculations.
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Chapter 6

Multiple integrals

6.1 Integrals depending on a parameter

Proposition 1. Let a < b and I be an open interval and f : [a, b] × I −→ R
a continuous function. Then the function g : I −→ R defined as

g(y) :=

∫ b

a

f(x, y) dx

is continuous. If f is continuous and its partial derivative ∂ f(x,y)
∂ y is continuous

then g is of class C1(I) and additionally for any y ∈ I:

g′(y) :=

∫ b

a

∂ f(x, y)

∂ y
dx.

Additional: Proof-continuity. The main ingredient of the proof is the fact
that the function f is uniformly continuous on the domains [a, b] × I0 for all
I0 ⊂ I that is closed and bounded (see Chapter 1). Let y ∈ I, then there exists

a I0 ⊂ I closed and bounded such that y ∈
◦
I0 (the interior of I0). Thanks to

the uniform continuity of f on [a, b] × I0, for any ε > 0, there exists a δ > 0
such that for all |h| < δ and for all x ∈ [a, b]:

(x, y), (x, y + h) ∈ [a, b]× I0 and |f(x, y + h)− f(x, y)| < ε.

Consequently, for any ε > 0, there exists a δ > 0 such that for all |h| < δ:
y + h ∈ I0 and

|g(y + h)− g(y)| ≤
∫ b

a

|f(x, y + h)− f(x, y)| dx ≤ ε(b− a)

proving the continuity of g since ε can be chosen arbitrarily small.

Proof - differentiability. We use the uniform continuity of f and of ∂f/∂y
on the domains [a, b]× I0. Using the mean value theorem:

g(y + h)− g(y)

h
=

∫ b

a

f(x, y + h)− f(x, y)

h
dx =

∫ b

a

∂ f(x, y + hθh)

∂ y
dx
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for a θh ∈]0, 1[. We write∫ b

a

∂ f(x, y + hθh)

∂ y
dx =

∫ b

a

∂ f(x, y)

∂ y
dx+

∫ b

a

∂ f(x, y + hθh)

∂ y
− ∂ f(x, y)

∂ y
dx.

to establish an estimation of the last integral, like in the first part.

Applications. This Proposition gives us a new technique to calculate inte-
grals, as the next example shows:

Example 1. We want to calculate∫ b

0

x2 cosx dx.

Instead of integration by parts (see Chapter 6 of semester 1) we consider the
function

g(y) :=

∫ b

0

cosxy dx

on an open interval containing y = 1, for example ]1/2, 2[. Applying Proposition
1, first to g(y):

g′(y) := −
∫ b

0

x sinxy dx

and then to g′(y):

g′′(y) = −
∫ b

0

x2 cosxy dx,

so ∫ b

0

x2 cosx dx = −g′′(1)

We can determine the function g explicitly:

g(y) =
sinxy

y

∣∣∣∣b
0

=
sin by

y
.

The derivatives of g are given by

g′(y) = − sin by

y2
+
b cos by

y

and

g′′(y) =
2 sin by

y3
− 2b cos by

y2
− b2 sin by

y2
.

Therefore, ∫ b

0

x2 cosx dx = −g′′(1) = (b2 − 2) sin b+ 2b cos b.

Generalized integrals. Proposition 1 extends to generalized integrals on

[a,∞[ if we can control the behavior of f(x, y) and its partial derivative ∂ f(x,y)
∂ y

when x goes to infinity:
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Proposition 2. Let I be an open interval and f : [a,∞[×I −→ R a continuous
function. Let φ : [a,∞[−→ R+ be a function for which the generalized integral∫ ∞

a

φ(x) dx

converges as |f(x, y)| ≤ φ(x) for all (x, y) ∈ [a,∞[×I. Then the function
g : I −→ R defined as

g(y) :=

∫ ∞
a

f(x, y) dx

is continuous. If f is continuous and its partial derivative ∂ f(x,y)
∂ y is continuous

and satisfies |∂ f(x,y)∂ y | ≤ ψ(x) for (x, y) ∈ [a,∞[×I and for a function ψ : I −→
R+ whose generalized integral exists on [a,∞[, then g is of class C1(I) and
moreover, for any y ∈ I:

g′(y) :=

∫ ∞
a

∂ f(x, y)

∂ y
dx.

Example 2. We want to calculate∫ ∞
0

x3e−x
2

: dx

We set I =]1/2, 2[ and f(x, y) = xe−yx
2

. The function f satisfies the hypotheses

of the proposition with φ(x) = xe−x
2/2 and ψ(x) = x3e−x

2/2. So

g(y) =

∫ ∞
0

xe−yx
2

dx.

is of class C1 and

g′(y) = −
∫ ∞
0

x3e−yx
2

dx.

Note that

g(y) = −
∫ ∞
0

d

d x

(
e−yx

2

2y

)
dx =

1

2y
.

So g′(y) = −1
2y2 and ∫ ∞

0

x3e−x
2

dx = −g′(1) =
1

2
.

Integrands and integration bounds with a parameter. If the integration
bounds depend on the parameter y of class C1 we can easily generalize the result
of Chapter 6.4.2 of Analysis I to integrals depending on the parameter y.

Proposition 3. Let I, J be two open intervals and f : J × I −→ R a function
of class C1 and a, b : I −→ J two functions of class C1. Then the function
g : I −→ R defined as

g(y) :=

∫ b(y)

a(y)

f(x, y) dx

is of class C1(I) and, moreover, for any y ∈ I:

g′(y) := f(b(y), y)b′(y)− f(a(y), y)a′(y) +

∫ b(y)

a(y)

∂ f(x, y)

∂ y
dx.
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Proof. Simply note that for all y, y + h ∈ I:

g(y + h)− g(y)

h
=

1

h

∫ b(y+h)

b(y)

f(x, y + h) dx− 1

h

∫ a(y+h)

a(y)

f(x, y + h) dx

+
1

h

∫ b(y)

a(y)

f(x, y + h)− f(x, y) dx.

This statement follows from the uniform continuity of f and the mean value
theorem.

Example 3. Calculate

lim
y→0

∫ y

0

(y − x) cosx2

sin y2
dx.

We define

g(y) =

∫ y

0

(y − x) cosx2 dx.

Then

g′(y) =

∫ y

0

cosx2 dx, g′′(y) = cos y2.

Let’s note that (sin y2)′′ = (2y cos y2)′ = 2 cos y2 + 4y2 sin y2. So

lim
y→0

g′′(y)

(sin y2)′′
=

1

2

and by l’Hôpital’s rule:

lim
y→0

∫ y

0

(y − x) cosx2

sin y2
dx ≡ lim

y→0

g(y)

sin y2
= lim
y→0

g′′(y)

(sin y2)′′
=

1

2
.

Extension to n paramters. In the Propositions 1 -3 we can replace the
parameter y by n parameters y by switching to the partial derivatives of

g(y) :=

∫ b

a

f(x,y) dx or g(y) :=

∫ b(y)

a(y)

f(x,y) dx.

Then, under the same hypotheses,

∂g(y)

∂yk
=

∫ b

a

∂ f(x,y)

∂ yk
dx

respectively

∂g(y)

∂yk
=
∂b(y)

∂yk
f(b(y),y)− ∂a(y)

∂yk
f(a(y),y) +

∫ b(y)

a(y)

∂ f(x,y)

∂ yk
dx.

6.2 Double integrals

Let D ⊂ R2 and f : D −→ R be a continuous function. We define the double
integral ∫∫

D

f(x, y) dxdy.

for a few types of domains D without presenting a theory of integration.
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6.2.1 Double integral on a closed rectangle

Let a < b, c < d and f : [a, b] × [c, d] −→ R a continuous function. Then,
using Proposition 1, the functions g : [c, d] −→ R and h : [a, b] −→ R defined by

g(y) :=

∫ b

a

f(x, y) dx and h(x) :=

∫ d

c

f(x, y) dy

are continuous. So the integrals∫ d

c

g(y) dy,

∫ b

a

h(x) dx

exist. Furthermore, we have

Theorem 1 - Fubini Theorem for continuous functions.∫ d

c

g(y) dy =

∫ b

a

h(x) dx.

We can define the double integral on a closed rectangle D = [a, b]× [c, d] by∫∫
D

f(x, y) dxdy =

∫ d

c

g(y) dy =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy

=

∫ b

a

h(x) dx =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

Proof. We define the function ψ : [c, d] −→ R by

ψ(x, t) =

∫ t

c

f(x, y) dy.

and the function φ : [c, d] −→ R by

φ(t) =

∫ b

a

ψ(x, t) dx =

∫ b

a

(∫ t

c

f(x, y) dy

)
dx.

We have ψ(x, c) ≡ 0 and so φ(c) = 0. Using Proposition 1, the function ψ(x, t)
is continuous. By the fundamental theorem of calculus, its partial derivative
relatively to t is continuous. Then, by Proposition 1 φ(t) is differentiable and

φ′(t) =

∫ b

a

∂

∂ t
ψ(x, t) dx =

∫ b

a

∂

∂ t

(∫ t

c

f(x, y) dy

)
dx =

∫ b

a

f(x, t) dx = g(t)

Consequently,∫ d

c

g(t) dt =

∫ d

c

φ′(t) dt = φ(d) =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ b

a

h(x) dx.

The double integral verifies the properties of linearity and monotonicity.
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Theorem 2. Let D = [a, b] × [c, d] and f, g : D → R be two continuous
functions. Then for any α, β ∈ R:∫∫

D

(αf(x, y)+βg(x, y))dxdy = α

∫∫
D

f(x, y)dxdy+β

∫∫
D

g(x, y)dxdy (6.1)

If f(x, y) ≤ g(x, y) for all (x, y) ∈ D, then∫∫
D

f(x, y) dxdy ≤
∫∫

D

g(x, y) dxdy. (6.2)

∣∣∣∣ ∫∫
D

f(x, y) dxdy

∣∣∣∣ ≤ ∫∫
D

|f(x, y)| dxdy. (6.3)

Mean value theorem. Let D = [a, b] × [c, d] and f, g : D → R be two
continuous functions and g ≥ 0. Then, there exists (at least) one (x0, y0) ∈ D
such that ∫∫

D

f(x, y)g(x, y) dxdy = f(x0, y0)

∫∫
D

g(x, y) dxdy

In particular, if g ≡ 1:∫∫
D

f(x, y) dxdy = f(x0, y0)Area(D) = f(x0, y0)|D|.

Consequently, ∫∫
D

dxdy = Area(D) = |D| = Vol(D × [0, 1]).

Examples.

1. Let D = [a, b] × [c, d] and f : [a, b] → R, g : [c, d] → R be two continuous
functions. Then,∫∫

D

f(x)g(y) dxdy =

∫ b

a

f(x) dx ·
∫ d

c

g(y) dy.

For example,∫∫
[0,1]×[0,2]

ex+2y dxdy =

∫ 1

0

ex dx ·
∫ 2

0

e2y dy = (e− 1) · (e
4 − 1

2
).

2. ∫∫
[0,π/2]×[0,π/2]

sin(x+ y) dxdy =

∫ π/2

0

(− cos(x+ π/2) + cosx) dx

=

∫ π/2

0

cosx+ sinx dx = 2
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Interpretation of the double integral. Let D = [a, b]× [c, d] and f : D →
R+ be a continuous function. We define

E = {(x, y, z) ∈ R3 : (x, y) ∈ D : and 0 ≤ z ≤ f(x, y)}

Then the volume of E, written Vol(E), is given by

Vol(E) =

∫∫
D

f(x, y) dxdy.

Example - volume of a pyramid. Let a > 0, D = [−a/2, a/2]× [−a/2, a/2]
and f : D → R+ be defined as

f(x, y) = h(1−max(2|x|/a, 2|y|/a))

The set E ∈ R3 defined above describes a pyramid of height h and of base D.
To calculate the volume of E we note that

Vol(E) = 4h

∫∫
[0,a/2]×[0,a/2]

f(x, y) dxdy.

So

Vol(E) = 4h

∫ a/2

0

(∫ y

0

(1− 2y/a) dx+

∫ a/2

y

(1− 2x/a) dx

)
dy

= 4h

∫ a/2

0

(
y(1− 2y/a) + (a/2− y)− (

(a/2)2

a
− y2

a
)

)
dy

= 4h

∫ a/2

0

a

4
− y2

a
dy

= 4h

(
a2

8
− a2

24

)
=
ha2

3

Almost disjoint closed rectangles. A subset D of R2 is called a closed rect-
angle if it is given as the Cartesian product of two closed and bounded intervals:
D = [a, b] × [c, d]. We call (Dk)k∈N a family of almost disjoint rectangles if for
any couple of integers n 6= m:

◦
Dn ∩

◦
Dm = ∅.

For any continuous function f : R2 −→ R we have:∫∫
⋃

kDk

f(x, y) dxdy =
∑
k

∫∫
Dk

f(x, y) dxdy.

If D is the reunion of the rectangles of a family of almost disjoint rectangles
and f, g : D −→ R are two continuous and bounded functions such that f < g
on D. Then, the volume

E = {(x, y, z) ∈ R3 : (x, y) ∈ D : and f(x, y) ≤ z ≤ g(x, y)}
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is given by

Vol(E) =

∫∫
D

g(x, y)− f(x, y) dxdy.

This extension allows us to treat generalized integrals such as, for example, f
continuous on an open rectangle:∫∫

[0,1]×[0,1]

1
√
xy

dxdy =

∫ 1

0

1√
x
dx

∫ 1

0

1
√
y
dy = 4.

We notice that the double integral on these domains verifies the properties of
linearity and monotonicity (6.1) - (6.3) and the mean value theorem.

Calculating double integrals. The technique introduced in the previous
example can be generalized as follows: let φ, ψ : [a, b] −→ R be two continuous
functions such that φ(x) < ψ(x) for all x ∈]a, b[. We consider the open and
bounded set D defined by

D = {(x, y) ∈ R2 : x ∈]a, b[: and φ(x) < y < ψ(x)}

Then, for any continuous function

f : D̄ = {(x, y) ∈ R2 : x ∈ [a, b] : and φ(x) ≤ y ≤ ψ(x)} −→ R,

we have ∫∫
D

f(x, y) dxdy =

∫ b

a

(∫ ψ(x)

φ(x)

f(x, y) dy

)
dx.

For any t ∈]a, b[ the function A :]a, b[−→ R defined by

A(t) =

∫ ψ(t)

φ(t)

f(t, y) dy

gives the surface obtained by dividing the set

E = {(x, y, z) ∈ R3 : (x, y) ∈ D : and 0 ≤ z ≤ f(x, y)}

by the plane of equation x = t. The volume of E is

Vol(E) =

∫ b

a

A(t) dt.
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More generally, if g : D̄ −→ R is a continuous function such that f < g in D,
then for any t ∈]a, b[ the function A :]a, b[−→ R defined as

A(t) =

∫ ψ(t)

φ(t)

(g(t, y)− f(t, y)) dy

describes the surface obtained by cuting the set

E = {(x, y, z) ∈ R3 : (x, y) ∈ D : et f(x, y) ≤ z ≤ g(x, y)}

with the plane of equation x = t. The volume of E is

Vol(E) =

∫ b

a

A(t) dt.

In the example of the pyramid we can divide by the plane of equation y = t.

We have A(t) = (1− t

h
)2a2, t ∈ [0, h], from which we get

Vol(E) = a2
∫ h

0

(1− t

h
)2 dt = a2h

∫ 1

0

(1− s)2 ds =
A(0)h

3
.

Example - triangular domain. Let D ⊂ R2 be the triangle given by

D = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}
= {(x, y) ∈ R2 : 0 ≤ y ≤ 1, y ≤ x ≤ 1}

Then, for any continuous function on D:∫∫
D

f(x, y) dxdy =

∫ 1

0

(∫ x

0

f(x, y) dy

)
dx

=

∫ 1

0

(∫ 1

y

f(x, y) dx

)
dy

If f(x, y) = sinhx2 the second expression for the double integral on D is not
applicable as you need to know the primitive function of sinhx2. However,∫∫

D

f(x, y) dxdy =

∫ 1

0

(∫ x

0

sinhx2 dy

)
dx =

∫ 1

0

x sinhx2 dx =
coshx2

2

∣∣∣∣1
0

Let T be the triangle given by the vertices A = (0, 0), B = (4, 0), C = (0, 3).
Then,

T = {(x, y) ∈ R2 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 3− 3x

4
}

= {(x, y) ∈ R2 : 0 ≤ y ≤ 3, 0 ≤ x ≤ 4− 4y

3
}.
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So, ∫∫
T

x

3x+ 4y
dxdy =

∫ 4

0

dx

∫ 3− 3x
4

0

dy
x

3x+ 4y

=

∫ 4

0

dx
x

4
ln(3x+ 4y)

∣∣∣∣y=3− 3x
4

y=0

=

∫ 4

0

dx
x

4
(ln 12− ln 3x) =

1

4

∫ 4

0

dx (2 ln 2)x− x lnx

=
(4 ln 2)x2 − 2x2 lnx+ x2

16

∣∣∣∣x=4

x=0

= 1.

Example - the parity of the domain and the function. Let D = B1(0) ⊂
R2 be the unit ball. Calculate ∫∫

D

x2 sin y dxdy.

We have∫∫
D

x2 sin y dxdy =

∫ 1

−1
x2
(∫ √1−x2

−
√
1−x2

sin y dy

)
dx = 2

∫ 1

−1
0 dx = 0.

More generally, let D be a domain such that (x, y) ∈ D implies that (x,−y) ∈ D.
If f is a continuous function on D and odd at y, then∫∫

D

f(x, y) dxdy =

∫∫
D∩{y>0}

f(x, y) dxdy +

∫∫
D∩{y<0}

f(x, y) dxdy

=

∫∫
D∩{y>0}

f(x, y) dxdy +

∫∫
D∩{y>0}

f(x,−y) dxdy

=

∫∫
D∩{y>0}

f(x, y) dxdy +

∫∫
D∩{y>0}

−f(x, y) dxdy = 0

6.2.2 Double integrals on R2

Here we define the double integral∫∫
R2

f(x, y) dxdy

of a continuous function f : R2 −→ R as the limit of the integrals on bounded
rectangles Dk such that Dk → R2 when k →∞ (in analogy to Analysis I). An
important property of the double integral on R2 is its invariance when trans-
lated: for any (x0, y0) ∈ R2,∫∫

R2

f(x− x0, y − y0) dxdy =

∫∫
R2

f(x, y) dxdy.

This invariance to translation is valid if the translation in one real variable, for
example, x0 = x0(y), is a continuous function of the other variable.
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Example. To calculate

I :=

∫∫
R2

ex−
y2

2(
1 + ex+

y2

2

)2 dxdy
we first note that∫

R

ex−
y2

2(
1 + ex+

y2

2

)2 dx = e−y
2

∫
R

ex+
y2

2(
1 + ex+

y2

2

)2 dx
= e−y

2

∫
R

ex(
1 + ex

)2 dx
= e−y

2

∫
R

d

dx

( −1

1 + ex
)
dx = e−y

2

.

Therefore, by the change of variable y2 = t:

I =

∫
R
e−y

2

dy = 2

∫ ∞
0

e−y
2

dy =

∫ ∞
0

t−
1
2 e−t dt = Γ(

1

2
) =
√
π.

6.2.3 Change of variables in R2

An interpretation of the determinant. Let v,w ∈ R2 be linearly inde-
pendent. The set

D = {sv + tw, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1}

describes a parallelogram in R2. Its area is given by

|D| := Area(D) = |det(v,w)|

The change of area by continuous functions. Let A ∈ M2,2(R) be in-
vertible and λA : R2 −→ R2 be the linear mapping defined as λA(x) = Ax. Let
C = [0, 1]× [0, 1]. Then the set λA(C) is a parallelogram in R2. Its area is given
by

|λA(C)| := Area(λA(C)) = |det(A)|.

Formula for the change of variables for linear mappings. Let A ∈
M2,2(R) be invertible, then∫∫

C

f(λA(s, t))|det(A)| dsdt =

∫∫
λA(C)

f(x, y) dxdy.

Example. For a diagonal matrix A = diag(λ, µ) we have∫ 1

0

∫ 1

0

f(λt, µs)|λµ| dsdt =

∫ λ

0

∫ µ

0

f(x, y) dxdy.
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Example. Let v =

(
1
2

)
,w =

(
3
4

)
. Calculate the following integral on

the parallelogram D = {sv + tw, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1}:∫∫
D

x+ y dxdy =

∫ 1

0

∫ 1

0

((s+ 3t) + (2s+ 4t)) · 2 dsdt = 10.

The change of variables. Let ψ : U −→ V be a bijective mapping of class
C1(U). We set ψ(s, t) = (x, y). Then, for any function f : V −→ R that can be
integrated ∫∫

U

f(ψ(s, t))|det Jψ(s, t)| dsdt =

∫∫
V

f(x, y) dxdy.

Example - polar coordinates. Let ψ(r, φ) = (r cosφ, r sinφ) = (x, y). So
det Jψ(r, φ) = r. Let D = {(x, y) : x2 + y2 ≤ R2} be a disc of radius R. Then,∫∫

[0,R]×[0,2π]
f(r cosφ, r sinφ) r drdφ =

∫∫
D

f(x, y) dxdy.

In particular,∫∫
[0,∞]×[0,2π]

f(r cosφ, r sinφ) r drdφ =

∫∫
R2

f(x, y) dxdy.

This change of variable allows us to calculate the Gauss integral

I :=

∫
R
e−

x2

2 dx

since

I2 =

(∫
R
e−

x2

2 dx

)2

=

∫
R
e−

x2

2 dx

∫
R
e−

y2

2 dy

=

∫∫
R2

e−
x2+y2

2 dxdy

=

∫∫
[0,∞]×[0,2π]

e−
r2

2 r drdφ

= 2π

∫ ∞
0

e−
r2

2 r dr

= −2πe−
r2

2

∣∣∞
0

= 2π.

If the function f(x, y) is a spherical function i.e. f(x, y) = g(r), then∫∫∫
BR

f(x, y) dxdy = 2π

∫
[0,R]

g(r)r dr.

The 2π factor corresponds to the arc-lentgh of a unit circle S1 ⊂ R2.
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6.2.4 Calculating multiple integrals

Multiple integrals. Let f : R3 −→ R be continuous. By generalizing the
construction of the double integral described above we can define∫∫∫

D

f(x, y, z) dxdydz

where D = [a1, b1]× [a2, b2]× [a3, b3] or D is an open bounded set in R3 or even
D = R3. In particular,

Vol(D) = |D| =
∫∫∫

D

dxdydz.

More generally, for a continuous function f : Rn −→ R we can define∫
...

∫
D

f(x1, ..., xn) dx1...dxn

for suitable domains D.

The change of variables. Let ψ : U −→ V be a bijective mapping of class
C1(U). We set ψ(t1, ...tn) = (x1, ..., xn). Then for any function f : V −→ R
that can be integrated∫
...

∫
U

f(ψ(t1, ...tn))|det Jψ(t1, ...tn)|dt1, ...dtn =

∫
...

∫
V

f(x1, ..., xn)dx1...dxn.

Example - spherical coordinates. Let

ψ(r, θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ) = (x, y, z)

with r > 0, θ ∈ [0, π], φ ∈ [0, 2π]. Then det Jψ(r, θ, φ) = r2 sin θ > 0. Let
D = BR = {(x, y, z) : x2 + y2 + z2 ≤ R2} be the ball of radius R. Then,∫∫∫

[0,R]×[0,π]×[0,2π]
f(r sin θ cosφ, r sin θ sinφ, r cos θ) r2 sin θ drdθdφ =∫∫∫

BR

f(x, y, z) dxdydz.

In particular,∫∫∫
[0,∞[×[0,π]×[0,2π]

f(r sin θ cosφ, r sin θ sinφ, r cos θ) r2 sin θ drdθdφ =∫∫∫
R3

f(x, y, z) dxdydz.

The integral in spherical coordinates consists of an integral on the unit sphere
(the angles θ, φ) of radius r. If the function f(x, y, z) is a spherical function, i.e.
f(x, y, z) = g(r), then∫∫∫

BR

f(x, y, z) dxdydz = 4π

∫
[0,R]

g(r)r2 dr.

The 4π factor corresponds to the area of the unit sphere S2 ⊂ R3 and 4πr2

represents the area of a sphere of radius r. In particular,

Vol(BR) =

∫∫∫
BR

dxdydz = 4π

∫ R

0

r2 dr =
4πR3

3
.
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Example - mass distribution. Let D ⊂ R3 be bounded and f : D −→ R+

a continuous function. We can interpret f as a density of mass. Then,

M =

∫∫∫
D

f(x, y, z) dxdydz

represents the mass of the body D and the integrals

Rx =
1

M

∫∫∫
D

xf(x, y, z) dxdydz,

Ry =
1

M

∫∫∫
D

yf(x, y, z) dxdydz,

Rz =
1

M

∫∫∫
D

zf(x, y, z) dxdydz

are the coordinates of the center of gravity of D. If D = BR and f = e−r then

M =

∫∫∫
BR

e−r dxdydz = 4π

∫
[0,R]

e−rr2 dr = 8π(1− (1 +R+R2/2)e−R)

and Rx = Ry = Rz = 0.

Example - volume of a solid of revolution. Let f : [a, b] −→ R be a
continuous function. The subset E of R3 obtained by the rotation of the surface
delimited by the graph of f around the axis Ox is given by

E = {(x, y, z) ∈ R3 : x ∈ [a, b], y2 + z2 < f2(x)}

Then, by taking polar coordinates for y, z, we obtain

Vol(E) =

∫∫∫
E

dxdydz = 2π

∫ b

a

(∫ |f(x)|
0

r dr

)
dx = π

∫ b

a

f2(x) dx.

Example - Radial function in Rn and volume of the unit ball Let
f : Rn −→ R be a radial function (spherical), that is f(x) = g(||x||2) for all
x ∈ Rn. Then : ∫

Rn

f(x) dx = |Sn−1|
∫ ∞
0

g(r)rn−1 dr

where |Sn−1| = Voln−1({x ∈ Rn : ||x||2 = 1}) designates the area of the unit
sphere of Rn. By taking g(r) = 1 if 0 ≤ r ≤ 1 and g(r) = 0 otherwise, we find
the volume of the unit ball B1(0) = {x ∈ Rn : ||x||2 ≤ 1}:

Bn := Voln(B1(0)) = |Sn−1|
∫ 1

0

rn−1 dr =
|Sn−1|
n

.

Consequently, if R > 0
Voln(BR(0)) = BnR

n.

To calculate Bn we use the Gaussian functions f(x) = e−||x||
2
2 =

n∏
k=1

e−x
2
k . On

one hand,∫
Rn

f(x) dx = |Sn−1|
∫ ∞
0

e−r
2

rn−1 dr =
|Sn−1|

2

∫ ∞
0

e−ss
n−1
2 ds =

|Sn−1|
2

Γ(
n

2
)
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by the change of variable s = r2. On the other hand,∫
Rn

f(x) dx =

n∏
k=1

∫
R

e−x
2
k dxk = π

n
2

since ∫
R

e−x
2
k dxk = 2

∫ ∞
0

e−x
2
k dxk =

∫ ∞
0

e−ss
−1
2 ds = Γ(

1

2
) =
√
π.

It follows that

Bn =
π

n
2

Γ(n2 + 1)
. (6.4)

85



Chapter 7

Differential equations

7.1 Classification of differential equations

Let I ⊂ R be an open interval and f : I×R −→ R a continuous function. An
equation of the form

y′ = f(t, y) or y′ = f(x, y) or ẏ = f(t, y) (7.1)

is called a first order differential equation. y = y(t) is said to be a solution of
y′ = f(t, y) on the interval I if y(t)∈ C1(I) is such that

dy(t)

dt
= f(t, y(t))

In the differential equation (7.1) we call y the dependent variable and t the
independent variable.

Geometric interpretation. Let v : I × R −→ R2 be a continuous vector
field defined as

v(t, y) =

(
1

f(t, y)

)
The graph of a solution y(t) defines a curve k : I −→ R2 of class C1(I)

k(t) =

(
t

y(t)

)
This curve is tangent to the vector field v since

dk(t)

dt
= v(t, y(t)).

We call such a curve an integral curve of the vector field v.

Cauchy problem. By searching for an integral curve containing the point
(t0, y0) we are searching for a solution to the Cauchy problem

y′ = f(t, y) and y(t0) = y0. (7.2)
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v(t, y) and its integral curves.

The equation
y′′ = f(t, y, y′) (7.3)

is called a second order differential equation where f : I × R2 −→ R. In
mechanics, Newton’s law F = ma, which describes the one dimensional motion
of a particle of mass m under the influence of the force F , is a second order
differential equation. t represents time, y(t) the position of the mass m at
time t, v(t) = y′(t) its velocity and a(t) = y′′(t) its acceleration.The force
F = f(t, y, y′) can depend on three variables t, y, y′. In mechanics derivatives
with respect to time t are often denoted as ẏ, ÿ etc.There are many examples
of differential equations in other areas of physics, for example, in electricity the
equation

Lÿ +Rẏ + C−1y = 0

describes the dynamics of a circuit of resistanceR, capacitance C and inductance
L, where y(t) is the charge. It is the equation of a harmonic oscillator (with
friction and without exterior forces).
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y = y(t) is said to be a solution of y′′ = f(t, y, y′′) on the interval I if
y(t) ∈ C2(I) is such that

d2y(t)

dt2
= f

(
t, y(t),

dy(t)

dt

)
.

The Cauchy problem for the equation y′′ = f(t, y, y′) is given by

y′′ = f(t, y, y′) and y(t0) = y0, y
′(t0) = v0. (7.4)

In mechanics y0 and v0 represent the position, respectively the speed at time
t0. For the equation y′′ = f(t, y, y′) we can also set the boundary conditions,
for example:

y′′ = f(t, y, y′) and y(t0) = y0, y(t1) = y1. (7.5)

If f = f(t, y), this equation represents the equation of Euler-Lagrange for the
Lagrangian

L =
1

2
y′2 − F (t, y),

∂F (t, y)

∂y
= f(t, y).

More generally, we call an equation of the form

y(n) = f(t, y, y′, ..., y(n−1))

an n′th order differential equation. If y = y(t) ∈ Rn and f : I ×Rn −→ Rn the
equation

y′ = f(t,y)

is called system of n (first order) differential equations. Any equation of order
n can be written as a system of n differential equations. For example, if n = 2
we define

y =

(
y
y′

)
and

f = f(t,y) =

(
y′

f(t, y, y′)

)
.

If y is a solution of y′′ = f(t, y, y′′) then y is a solution of

y′ = f(t,y)

and vice versa. For example, the harmonic oscillator can be written as

d

dt

(
y
y′

)
=

(
0 1
−RL − 1

LC

)(
y
y′

)
In practice the objective is to find an explicit solution to a differential equation
and the Cauchy problem associated to it. It is often impossible and we must
do a qualitative study of the problem and solve the problem numerically. To
do such a study, one must first know that solutions to the problem exist. A
fundamental mathematical result is the existence and uniqueness of the solution
to the Cauchy problem

y′ = f(t,y) and y(t0) = y0

under certain fairly general hypotheses.
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7.2 Existence and local uniqueness of solutions

First we transform the Cauchy problem for the system of differential equations
to a system of integral equations.

Theorem - Integral equation. Let I be an interval, t0 ∈
◦
I, D ⊂ Rn and

f : I ×D −→ Rn continuous. Then y : I −→ Rn is a solution of class C1 of

y′ = f(t,y) and y(t0) = y0 (7.6)

if and only if y : I −→ Rn is a continuous solution of the integral equation

y(t) = y0 +

∫ t

t0

f(s,y(s)) ds. (7.7)

Proof. If y : I −→ Rn is a solution of class C1 of (7.6), then by integrating
the system of differential equations from t0 to t ∈ I:∫ t

t0

y′(s) ds =

∫ t

t0

f(s,y(s)) ds

that is to say

y(t)− y0 =

∫ t

t0

f(s,y(s)) ds.

If y : I −→ Rn is a continuous solution of the integral equation (7.7), then y
is of class C1 since the right hand side of (7.7) is the indefinite integral of a
continuous function (of the variable s), therefore it is C1. Taking the derivative
of (7.7) with respect to t we obtain the differential equation system of (7.6). In
addition, from the integral equation we get y(t0) = y0.

Definitions. Let t0 ∈ R, y0 ∈ Rn. We define the closed ”cylinder” Ra,b ⊂
Rn+1 as

Ra,b := {
(

t
y

)
∈ Rn+1 : |t− t0| ≤ a, ||y − y0||2 ≤ b}

A continuous function f : Ra,b −→ Rn is said to be Lipschitz continuous in
Ra,b with respect to y if there exists a constant L > 0 such that for any(

t
y1

)
,

(
t

y2

)
∈ Ra,b:

||f(t,y2)− f(t,y1)||2 ≤ L||y2 − y1||2. (7.8)

Theorem - Existence and local uniqueness. Let f : Ra,b −→ Rn be Lip-
schitz continuous in Ra,b with respect to y. Let M = Ma,b = max{||f(t,y)||2 :
(t,y) ∈ Ra,b}. Then, the Cauchy problem (7.6)

y′ = f(t,y) and y(t0) = y0 (7.9)

has a unique solution y : [t0 − α, t0 + α] −→ Rn, where α = min(a,
b

M
).
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Remark - understanding α. The constant α gives a sufficient condition such
that the solution y(t) remains in the cylinder Ra,b. In fact, from the triangle
inequality (see Chapter 2) and the differential equation

||y(t)− y0||2 ≤
∫
[t0,t]

||y′(s)||2 ds =

∫
[t0,t]

||f(s,y(s))||2 ds ≤M |t− t0|,

if M |t− t0| ≤ b and |t− t0| ≤ a, then y(t) ∈ Ra,b. If Ma ≤ b, α = a otherwise
choose α = b

M .

Proof. In I := [t0 − α, t0 + α] consider E = C0(I) the space of continuous
functions (curves) y(t) : I −→ Rn equipped with the norm

||y||E := sup{||y(t)||2e−2L|t−t0| : t ∈ I} = max{||y(t)||2e−2L|t−t0| : t ∈ I}.

Then (E, || · ||E) is a Banach space (the norm || · ||E is equivalent to the usual
norm for uniform convergence, that is to say, without the exponential factor).
Let F be the set of curves y ∈ E such that their graph is in Ra,b. Then F ⊂ E
is closed in Rn+1. Consider the function T : F −→ E defined as

(Ty)(t) := y0 +

∫ t

t0

f(s,y(s)) ds.

Thanks to the estimation ||(Ty)(t)− y0||2 ≤Mα ≤ b, T : F −→ F . Using

e−2L|t−t0|||(Ty)(t)− (Tx)(t)||2 ≤ e−2L|t−t0|
∫
[t0,t]

||f(s,y(s))− f(s,x(s))||2 ds

≤ e−2L|t−t0|
∫
[t0,t]

L||y(s)− x(s)||2 ds

= Le−2L|t−t0|
∫
[t0,t]

e2L|s−t0|e−2L|s−t0|||y(s)− x(s)||2 ds

≤ Le−2L|t−t0|||y − x||E
∫
[t0,t]

e2L|s−t0| ds

≤ Le−2L|t−t0|||y − x||E
e2L|t−t0| − 1

2L

≤ 1

2
||y − x||E

and taking the maximum on the left hand side, we see that T : F −→ F is a
contraction

||T (y)− T (x)||E ≤
1

2
||y − x||E .

Thus T has a unique fixed point y = y(t) in F :

y(t) = (Ty)(t) := y0 +

∫ t

t0

f(s,y(s)) ds.

Locally Lipschitz continuous functions. Let I be an interval, D ⊂ Rn.
A continuous function f : I × D −→ Rn is called locally Lipschitz continuous
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with respect to y in I × D if for any t0 ∈
◦
I, y0 ∈

◦
D there exists a cylinder

Ra,b ⊂ I ×D and a constant L := L(t0,y0) > 0 such that

||f(t,y2)− f(t,y1)||2 ≤ L||y2 − y1||2

in Ra,b. A continuous function f : I×D −→ Rn such that the partial derivatives
∂fi(t,y)

∂yj
are continuous for all 1 ≤ i, j ≤ n is always Lipschitz continuous with

respect to y. In fact, from the composition rule

f(t,y2)− f(t,y1) =

∫ 1

0

d

dσ
f(t, σy2 + (1− σ)y1) dσ

=

∫ 1

0

Jy
f (t, σy2 + (1− σ)y1)(y2 − y1) dσ

where Jy
f is the n × n matrix containing the partial derivatives

∂fi(t,y)

∂yj
. It

follows from the continuity of these partial derivatives that

||f(t,y2)−f(t,y1)||2 ≤
∫ 1

0

||Jy
f (t, σy2+(1−σ)y1)||2dσ||y2−y1||2 ≤ L||y2−y1||2

with L = max{||Jy
f (t,y)||2 : (t,y)inRa,b. For example, the function f :=

[0, 1]×]0,∞[−→ R defined as f(t, y) =
t

y
is locally Lipschitz continuous with

respect to y. It is not Lipschitz continuous with respect to y for y ∈]0,∞[.

Corollary. Let f : I ×D −→ Rn be locally Lipschitz continuous with respect

to y in I ×D. Then for any t0 ∈
◦
I, y0 ∈

◦
D there exists an interval J such that

the Cauchy problem has a unique solution in J .

Other properties. The solution y(t) to the Cauchy problem depends on
the initial conditions t0,y0. Hence we can write y = y(t, t0,y0). With an
argument of the type ”fixed point” we can prove that y is continuous in t0
and y0. Similarly, if the function f is a continuous function of a parameter λ:
f = f(t,y, λ), then the solution y(t,λ) is continuous at λ.
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7.3 Solving certain first order differential equa-
tions

7.3.1 y′ = f(t)

The general solution of
y′ = f(t)

for a continuous function f : I −→ R is given by the family of antiderivatives of
f(t):

y(t) =

∫ t

f(s) ds+ C, C ∈ R.

The Cauchy problem
y′ = f(t) and y(t0) = y0

has a unique solution given by∫ t

t0

y′(s) ds =

∫ t

t0

f(s) ds

i.e.

y(t) =

∫ t

t0

f(s) ds+ y(t0).

Examples.

1. The general solution of
y′ = 2 sin t cos t

is given by
y(t) = sin2 t+ C, C ∈ R.

2. Consider

y′ =
2

1− t2

on I =] − 1, 1[. The solution to the Cauchy problem with y(−0.5) = 3 is
given by∫ t

−0.5
y′(s) ds =

∫ t

−0.5

2

1− s2
ds =

∫ t

−0.5

1

1 + s
+

1

1− s
ds

i.e.

y(t) = ln(1 + t)− ln(1− t)− (ln 1/2− ln 3/2) + 3 = ln
1 + t

1− t
+ ln 3 + 3.

Note as well that

ln
1 + t

1− t
= 2 arctanh t.
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7.3.2 y′(x) + a(x)y(x) = b(x)

Finding solutions to the linear equation y′(x) + a(x)y(x) = b(x). Let
a, b : I −→ R be continuous. To solve the homogeneous linear equation (i.e.
b(x) ≡ 0)

y′(x) + a(x)y(x) = 0

we define
u(x) = eA(x)y(x)

where A(x) is an antiderivative of a(x), i.e. A′(x) = a(x). The function u(x)
satisfies

u′(x) = eA(x)(y′(x) + a(x)y(x)) = 0.

Therefore u(x) = c for a constant c ∈ R and y(x) = c e−A(x) is the general
solution of the homogeneous linear equation. To find a particular solution of
the inhomogeneous linear equation note that u(x) satisfies

u′(x) = b(x)eA(x).

Therefore

u(x) =

∫ x

b(s)eA(s) ds =

∫ x

x0

b(s)eA(s) ds+ c.

for an x0 ∈ R, i.e.

y(x) = c e−A(x) + e−A(x)

∫ x

x0

b(s)eA(s) ds.

Formulas for the linear equation. General solution:

y(x) = c e−A(x) + e−A(x)

∫ x

b(s)eA(s) ds, A′(x) = a(x).

Solution to the Cauchy problem y(x0) = y0:

y(x) = y0e
A(x0)−A(x) + e−A(x)

∫ x

x0

b(s)eA(s) ds, A′(x) = a(x).

Note that there always exists a unique solution to the Cauchy problem.

General properties.

1. Let y1(x), y2(x) be two solution of the homogeneous equation y′(x) +
a(x)y(x) = 0. Then any linear combination αy1(x)+βy2(x) of y1(x), y2(x)
is also a solution of the homogeneous equation.

2. Let z1(x), z2(x) be two solutions of the inhomogeneous equation y′(x) +
a(x)y(x) = b(x). Then z1(x) − z2(x) is a solution of the homogeneous
equation. Or if z(x) is a solution of the non-homogeneous equation, then
y(x) + z(x) is a solution of the inhomogeneous equation. That is why the
general solution of the non-homogeneous equation is written as the sum
of the general solution of the homogeneous equation and of a particular
solution of the inhomogeneous equation.
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Variation of constants method. A useful method to find a particular so-
lution of the inhomogeneous equation is to replace the constant c in the general
solution y(x) = c e−A(x) by a function c(x) and to insert this ansatz in the
inhomogeneous equation. We find(

c(x) e−A(x)
)′

+ a(x)c(x) e−A(x) = b(x)

and finally
c′(x) = b(x)eA(x)

Example. Give the general solution of

y′ +
t

1 + t2
y =

t

(1 + t2)2

Note that A(t) = 1
2 ln(1 + t2). Consequently, the general solution of the homo-

geneous equation is of the form

c e−A(t) =
c√

1 + t2
, c ∈ R.

A particular solution of the nonhomogeneous equation is given by

e−A(t)

∫ t

0

b(s)eA(s) ds =
1√

1 + t2

∫ t

0

s

(1 + t2)3/2
=
−1

1 + t2
.

Hence, the general solution is of the form

y(t) =
c√

1 + t2
− 1

1 + t2
, c ∈ R.

7.3.3 y′ = f(y)

This equation is called an autonomous differential equation since the function
f does not depend on the independent variable t. The autonomous differential
equation remains invariant under translation in the variable t, i.e. if y(t) is a
solution of y′ = f(y) then y(t + s) is a solution of y′ = f(y) for any fixed real
number s. If y0 is such that f(y0) = 0, then the constant function y(t) = y0
is a solution of the differential equation y′ = f(y). Such a solution is called a
stationary solution or a stationary point.

Solutions of the autonomous equation. Consider the Cauchy problem

y′ = f(y), y(t0) = y0

for a continuous function F such that f(y0) 6= 0 (i.e. y0 is not a stationary
solution). Let F be a primitive integral of the function 1/f , i.e.

dF (y)

dy
=

1

f(y)

then, the unique solution of the Cauchy problem y(t) satisfies the relation

F (y(t))− F (y0) = t− t0.
Next we must solve this equation for y(t). Note that F is locally invertible

around y0 since dF (y)
dy |y=y0 = 1

f(y0)
6= 0. Consequently, in a neighborhood of t0

we have
y(x) = F−1

(
F (y0) + t− t0

)
.
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Remark. The solution y(t) is unique for any x such that f(y(x)) 6= 0. Indeed,
if z(t) is another solution such that f(z(x)) 6= 0, then F (z(t)) = F (y(t)) since

dF (z(t))

dt
=

z′(t)

f(z(t))
= 1 =

y′(t)

f(y(t))
=
dF (y(t))

dt

and F (z(t0)) = F (y(t0)). From the mean value theorem there exists c = c(t)
between y(t) and z(t) such that f(c(t)) 6= 0 and

0 = F (z(t))− F (y(t)) =
1

f(c(t))

(
z(t)− y(t)

)
i.e. z(t) = y(t).

Remark. The condition f(y0) 6= 0 is necessary and sufficient for uniqueness
of the solution to the Cauchy problem. For example,

y′ = 2
√
|y|, y(0) = 0

has two distinct solutions y1(t) = 0 and y2(t) = t2. To guarantee the uniqueness
of stationary solutions f must satisfy stronger hypotheses: A sufficient condi-
tion is that f must be Lipschitz continuous on an interval around the initial
condition.

Remark. Formally we can write the differential equation d y
dt = f(y) as

dy = f(y) dt or
d y

f(y)
= dt

and we integrate to get ∫ y

y0

d η

f(η)
dη =

∫ t

t0

dξ

i.e.
F (y)− F (y0) = t− t0.

Example. Give the solution of the Cauchy problem

y′ = 1− y2, y(1) = 0.

We have ∫ y

0

d η

1− η2
dη =

∫ t

1

dξ

where
arctanh y(t) = t− 1 i.e. y(t) = tanh(t− 1)

7.3.4 Variable substitution technique

We can transform the differential equation y′ = f(t, y) through the application
(t, y) 7→ (s, u) where s = s(t, y) and u = h(t, y). In the following we will present
a few examples:
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Transformation of an autonomous equation. The variable substitution

s = s(t), y(t) = a(t)u(s), a′(t), a(t) > 0,

allows to transform the differential equation

y′ = a′(t)f(y(t)/a(t))

by y′(t) = a′(t)u(s) + a(t)s′(t)u̇(s) with u̇(s) =
d u(s)

ds
into the differential

equation
a(t)s′(t)u̇(s) = a′(t)f(u(s))− a′(t)u(s).

This becomes an autonomous equation if s(t) = ln a(t).

Riccati equation. There are transformations that give second order differ-
ential equations. To find the general solution of

y′ = −y2 + q(x)

we set y =
u′

u
, u > 0. We obtain

u′′ = q(x)u

Autonomous systems - an equation for orbits in phase space. Consider
the autonomous system

ẋ = −g(x, y), ẏ = f(x, y) (7.10)

If we cannot solve this system we can formulate a first order differential equation
considering y as a function of x. By setting y(t) = Y (x(t)) we get

f(x, Y (x)) = ẏ =
d Y

dx
ẋ = −d Y

dx
g(x, Y (x)).

This is (for convenience we keep using the notation y instead of Y ) a first order
differential equation:

f(x, y) + g(x, y)
d y

dx
= 0, or

d y

dx
= −f(x, y)

g(x, y)
.

7.3.5 Exact differential equations

The most general form of a differential equation is f(x, y, y′) = 0, called
implicit differential equation. A particular case is given by differential equations
of the form f(x, y) + g(x, y)y′ = 0, for which we, under certain conditions, can
find solutions given by an equation of the form H(x, y(x)) = 0. In fact, if

D ⊂ R2 and H : D −→ R is of class C1, then for any (t0, x0) ∈
◦
D a solution of

the Cauchy problem

∂H(x, y)

∂x
+
∂H(x, y)

∂y
y′ = 0, y(x0) = y0

is given by the equation H(x, y(x)) = H(x0, y0).
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Exact differential equation. Let D =: [a, b] × [c, d] and f, g : D −→ R of
class C1. The differential equation

f(x, y) + g(x, y)y′ = 0 (7.11)

is said to be exact if
∂f(x, y)

∂y
=
∂g(x, y)

∂x
(7.12)

In this case there exists H : D −→ R of class C2 given by (See exercise 27,
Chapter 6)

H(x, y) =

∫ 1

0

f(xt, yt)(x− x0) + g(xt, yt)(y − y0) dt+ const. (7.13)

where (xt, yt) = (tx+ (1− t)x0, ty + (1− t)y0) ∈
◦
D. Alternatively, we can find

a function H(x, y) as follows: Let

F (x, y) =

∫ x

x0

f(z, y) dz

therefore
∂F (x, y)

∂x
= f(x, y). We set H(x, y) = F (x, y) + K(y). Of course

∂H(x, y)

∂x
= f(x, y) and

∂H(x, y)

∂y
= g(x, y) imply that K ′(y) = g(x, y) −

∂F (x, y)

∂y
. The right hand side is indeed independent of x (this justifies our

choice of H) since

∂

∂x

(
g(x, y)− ∂F (x, y)

∂y

)
=
∂g(x, y)

∂x
− ∂f(x, y)

∂x
= 0.

We must solve an autonomous differential equation for K.

Application to autonomous systems. If the functions f and g verify the
condition (7.12) the autonomous system (7.10) can be written like a ”Hamilto-
nian” system

ẋ = −∂H(x, y)

∂y
, ẏ =

∂H(x, y)

∂x
. (7.14)

If (x(t), y(t)) is a solution of (7.14), then H(x(t), y(t)) = const, can be inter-
preted as the conservation of the ”energy H(x, y)”. If we identify the system
(7.14) with a mechanical system (movement of a particle in one dimension),
then x corresponds to the momentum and y corresponds to the position (see
also section 7.4.5).

Integrating factor. If the differential equation (7.11) is not exact, we can in
certain cases multiply (7.11) by a function λ(x, y) (called the integrating factor)
which renders (7.11) exact, in other words

∂(λ(x, y)f(x, y))

∂y
=
∂(λ(x, y)g(x, y))

∂x
.

For example, the inhomogeneous linear differential equation y′+a(x)y−b(x) = 0
is not exact (g(x, y) = 1, f(x, y) = a(x)y − b(x)). An integrating factor is
λ(x) = eA(x), A′ = a. We find H(x, y) = eA(x)y−k(x) where k′(x) = b(x)eA(x).
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7.4 Differential equations of order two

7.4.1 Linear homogenous equations - general properties

Let p, q : I −→ R be continuous. We call an equation of the type

y′′(t) + p(t)y′(t) + q(t)y(t) = 0. (7.15)

a linear homogenous differential equation of order two.
With the exception of a few particular cases we can not give any explicit

solutions to equations of this type.

Proposition. Let y1(t), y2(t) be two solutions of (7.3). Then, for any α, β ∈ R
the linear combination αy1(t) + βy2(t) is also a solution of (7.3).

Proposition. The Cauchy problem for the linear homogenous differential
equation of order two, i.e.

y′′(t) + p(t)y′(t) + q(t)y(t) = 0, and y(t0) = y0, y
′
0(t0) = v0

admits a unique solution for every couple (y0, v0) ∈ R2.

Definition. The two functions y1, y2 : I −→ R are said linearly independent
if

(αy1(t) + βy2(t) = 0 for all t ∈ I)⇒ α = β = 0

Definition. Let y1, y2 : I −→ R be two functions of class C1(I). We call the
Wronskian of y1, y2 the function w : I −→ R defined by

w(t) = y1(t)y′2(t)− y′1(t)y2(t).

Proposition. Let y1(t), y2(t) be two solutions (7.3). Then, the Wronskian of
y1, y2 is given by

w(t) = w(t0) exp
(
−
∫ t

t0

p(s) ds
)
.

Proof. w′(t) = y1(t)y′′2 (t)− y′′1 (t)y2(t) = −p(t)w(t).

Remark. Consequently we have the following alternative: either the Wron-
skian is always zero on I or it is never zero on I.

Proposition. Two solutions y1(t), y2(t) of (7.3) are linearly independent if
and only if their Wronskian is non zero.

Proposition. Equation (7.3) admits two linearly independent solutions y1(t), y2(t)
and every solution y(t) of (7.3) is of the form

y(t) = c1y1(t) + c2y2(t)

where c1 and c2 are constants.
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Remark. To find the unique solution of the Cauchy problem starting from a
general solution we resolve the system of linear equations

y0 = c1y1(t0) + c2y2(t0) v0 = c1y
′
1(t0) + c2y

′
2(t0)

for c1 and c2.

Remark. If we have a solution y1(t) of (7.3) we can find another solution y2(t)
that is linearly independent with y1(t) with the Wronskian: for a t0 ∈ I we set
w(t0) = 1 and we solve the relation

w(t) = exp
(
−
∫ t

t0

p(s) ds
)

for y2(t) by using that

w(t) = y1(t)y′2(t)− y′1(t)y2(t) = y21(t)

(
y2(t)

y1(t)

)′
.

Therefore, another solution y2(t) is given by

y2(t) = y1(t)

∫ t

t0

w(s)

y21(s)
ds = y1(t)

∫ t

t0

e
−

∫ s
t0
p(τ) dτ

y21(s)
ds

Interpretation as a system of equations of order 1. The notions ”linearly
independent” and the Wronskian are more intuitive for the system of equations
of order 1 associated to (7.3):

d

dt

(
y
y′

)
=

(
0 1
−q(t) −p(t)

)(
y
y′

)
(7.16)

Two solutions are said linearly independent if the vectors y1(t) =

(
y1(t)
y′1(t)

)
,y2(t) =(

y2(t)
y′2(t)

)
are two linearly independent vector for any t ∈ I. The Wronskian is

the determinant of the matrix formed by the two vectors y1(t),y2(t):

w(t) = det

(
y1(t) y2(t)
y′1(t) y′2(t)

)
The Wronskian gives the area (more precisely the oriented area since the Wron-
skian can be positve or negative) of the parallelogram

D(t) = {αy1(t) + βy2(t), 0 ≤ α ≤ 1, 0 ≤ β ≤ 1}.

By the results above the vectors y1(t),y2(t) are linearly independent for any t ∈
I if and only if y1(t0),y2(t0) are linearly independent for a t0 ∈ I. Consequently,
the solutions of the system (7.4) form a vector space of dimension 2.
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7.4.2 Homogeneous linear equations with constant coeffi-
cients

Consider
y′′(t) + p y′(t) + q y(t) = 0 with p, q ∈ R. (7.17)

We check if y(t) = exp(λt) is a solution for a given λ. We find that λ must be
a root of the characteristic polynomial associated with the matrix

A =

(
0 1
−q −p

)
i.e.

λ2 + p λ+ q = 0.

Note that the roots give the eigenvalues λ1, λ2 of the matrix A. We distinguish
the following cases:

Two distinct real eigenvalues. λ1, λ2 ∈ R and λ1 6= λ2. The general
solution is given by

y(t) = c1e
λ1t + c2e

λ2t

Two distinct conjugated complex eigenvalues. λ1 = µ+ iω, λ2 = µ− iω,
µ, ω ∈ R, ω 6= 0. The exponential functions are complex-valued solutions. To
obtain real-valued solutions note that the imaginary part and the real part are
solutions as well. The general solution is given by

y(t) = c1e
µt cos(ωt) + c2e

µt sin(ωt)

A double real eigenvalue. λ1 = λ2 = λ ∈ R. We find a second solution
using the Wronskian formula given by teλ t. The general solution is given by

y(t) = c1e
λt + c2t e

λt = (c1 + c2t)e
λt

7.4.3 Inhomogeneous linear equations

Let p, q, f : I −→ R be continuous. We call an equation of the form

y′′(t) + p(t)y′(t) + q(t)y(t) = f(t). (7.18)

an inhomogeneous second order linear differential equation.

Proposition. A solution y(t) of (7.6) is of the form

y(t) = c1y1(t) + c2y2(t) + yp(t)

where y1(t), y2(t) are two linearly independent solutions of the associated ho-
mogeneous equation and yp(t) is a particular solution of (7.6).

Construction of a particular solution in the general case. Let y1(t), y2(t)
be two linearly independent solutions of the homogeneous equation (7.3) and
w(t) = y1(t)y′2(t)−y′1(t)y2(t) its Wronskian. We define the function k : I×I −→
R as

k(s, t) =
y1(s)y2(t)− y1(t)y2(s)

y1(s)y′2(s)− y′1(s)y2(s)
=
y1(s)y2(t)− y1(t)y2(s)

w(s)
.
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Proposition. A particular solution yp(t) of (7.6) is given by

yp(t) =

∫ t

t0

k(s, t)f(s) ds

Proof. Note that k(t, t) = 0, we have

y′p(t) = k(t, t)f(t) +

∫ t

t0

Dtk(s, t)f(s) ds =

∫ t

t0

Dtk(s, t)f(s) ds

and

y′′p (t) = Dtk(t, t)f(t) +

∫ t

t0

Dttk(s, t)f(s) ds.

Therefore,

y′′p (t)+p(t)y′p(t)+q(t)yp(t) = Dtk(t, t)f(t)+

∫ t

t0

(
Dttk(s, t)+p(t)Dtk(s, t)+q(t)k(s, t)

)
f(s)ds.

Using

Dtk(s, t) =
y1(s)y′2(t)− y′1(t)y2(s)

w(s)

and

Dttk(s, t) =
y1(s)y′′2 (t)− y′′1 (t)y2(s)

w(s)

we see that

Dtk(t, t) =
y1(t)y′2(t)− y′1(t)y2(t)

w(t)
= 1

and
Dttk(s, t) + p(t)Dtk(s, t) + q(t)k(s, t) = 0,

hence yp(t) is a particular solution of (7.6).

Remark. Even though this is a general method there are often more efficient
techniques for finding a particular solution.

7.4.4 Non-homogeneous linear equations with constant
coefficients

Let f : I −→ R be continuous. Consider

y′′(t) + p y′(t) + q y(t) = f(t). (7.19)

with p, q ∈ R. Let us calculate k(s, t):

Two distinct real eigenvalues. λ1, λ2 ∈ R and λ1 6= λ2.

k(s, t) =
eλ2(t−s) − eλ1(t−s)

λ2 − λ1
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Two distinct complex conjugated eigenvalues. λ1 = µ+ iω, λ2 = µ− iω,
µ, ω ∈ R, ω 6= 0. It is easier to calculate k(s, t) using the complex solutions:

k(s, t) = eµ(t−s)
eiω(t−s) − e−iω(t−s)

2iω
= eµ(t−s)

sinω(t− s)
ω

A double real eigenvalue. λ1 = λ2 = λ ∈ R. Then

k(s, t) = (t− s)eλ(t−s)

Example. Solve the Cauchy problem

y′′(t) + p y′(t) = −g, and y(0) = h, y′0(0) = 0

where g > 0. This problem describes free fall with air resistance (p > 0) from a
height h.

Application of the general method. The eigenvalues are 0 and −p,
therefore y1(t) = e−pt and y2(t) = 1 are two linearly independent solutions of
the homogeneous equation. We have

k(s, t) =
1− e−p(t−s)

p

and

yp(t) = −g
∫ t

0

k(s, t) ds = g
1− p t− e−p t

p2

We deduce that yp(0) = 0 and y′p(0) = 0. Therefore

y(t) = h+ yp(t)

is a solution of the Cauchy problem.

Alternative method. The equation is of first order for y′. From 7.2.2

y′(t) = −g 1− e−p t

p

is a particular solution and after integrating y(t) = h+ yp(t).

Equations with f(t) = E sin(ωt) or f(t) = E cos(ωt). To find a particular
solution of (7.7) where (i)f(t) = E sin(ωt) or (ii) f(t) = E cos(ωt) we pass to
complex numbers and search for a particular solution zp : R −→ C of

z′′ + pz′ + qz = Eeiωt.

Next we take yp = Imzp in case (i) and yp = Rezp in case (ii). We try the
Ansatz z = Aeiωt, A ∈ C. When inserted in the differential equation it gives
the condition

(−ω2 + ipω + q)Aeiωt = Eeiωt.

If −ω2 + ipω + q 6= 0 the solution is given by A =
E

−ω2 + ipω + q
and conse-

quently

zp(t) =
E

−ω2 + ipω + q
eiωt.
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Example. Find a particular solution of

y′′(t) + 2y′(t) + y(t) = E sin(ω t)

where E > 0, ω 6= 0. We find the condition

A =
E

1− ω2 + 2iω
=
E(1− ω2 − 2iω)

(1 + ω2)2

Therefore,

yp(t) = Im(A ei ω t) = E
(1− ω2) sin(ω t)− 2ω cos(ω t))

(1 + ω2)2

Example. Find a particular solution of

y′′(t) + ω2
0y(t) = E sin(ω t).

If ω2 6= ω2
0 , then

yp(t) = Im(
E

−ω2 + ω2
0

ei ω t) =
E sinωt

ω2
0 − ω2

.

If ω2 = ω2
0 ,we do an Ansatz of the variation of constants method z(t) = A(t)ei ω t

and find A(t) =
−iEt

2ω
, therefore

yp(t) = Im(
−iEt

2ω
ei ω t) =

−iEt cos(ωt)

2ω
=
−iEt sin(ωt+ π

2 )

2ω
.

The ”phase”
π

2
indicates the delay of the system.

7.4.5 Autonomous equations and conservative systems

Let f : R2 −→ R be continuous. We call autonomous differential equation of
order two an equation of the form

ÿ(t) = −f(y(t), ẏ(t)).

This differential equation also has the property of being invariant under trans-
lation in t”, i.e. if y(t) is a solution then y(t+ s) is a solution for any real fixed
s. If the function f does not depend on y′, i.e. f = f(y) we call this equation
conservative. By introducing a parameter m > 0 (the mass of the particle) the
associated Cauchy problem is

mÿ(t) = −f(y) and y(t0) = y0, ẏ(t)(t0) = v0 (7.20)

Definition. Let F be a primitive integral of f and E : R2 −→ R be defined
by

E(y, p) =
1

2m
p2 + F (y)

If y(t) is a solution of (7.20) we call E(y(t),mẏ(t)) the energy of y(t).
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Proposition. Let y(t) be a solution of (7.20), then

d

dt
E(y(t),mẏ(t)) = 0

Consequently,

E(y,mẏ) =
mẏ2

2
+ F (y) = const = E(y0, v0) := E0

and we can reduce the problem to an autonomous equation of order 1:

ẏ = ±
√

2E0 − 2F (y)

m
.

Notice that the differential equation of (7.20) is equivalent to a Hamiltonian
system of the form (7.14) (see section 7.3.5). In fact, if we set p = mẏ, then

ṗ = −∂E(y, p)

∂y
= −f(y), ẏ =

∂E(y, p)

∂p
=

p

m
. (7.21)

7.5 Systems of linear differential equations with
constant coefficients

7.5.1 Homogeneous systems

Let A ∈ Mn,n(R) (or even A ∈ Mn,n(C)) . We consider the homogeneous
system of differential equations

y′(t) = Ay(t) (7.22)

and its associated Cauchy problem:

y′(t) = Ay(t), y(0) = y0. (7.23)

The theorem on existence and uniqueness of local solutions ensures us the ex-
istence of a unique solution y(t) of (7.23). This solution can be extended to
R. In fact, f(y) = Ay is a Lipschitz function with L = ||A||2 on Rn. We can
choose Ra,b such that α = ||A||2 for any initial condition y0. By iterations, we
extend the solution to R. Likewise for the solutions of (7.22).

Proposition - Superposition of the solutions. Let y1(t),y2(t) be the
functions of (7.22). Then, for any α, β ∈ R the linear combination αy1(t) +
βy2(t) is a solution of (7.22).

In analogy to the discussion in Chapter 7.3 the n solutions y1(t), . . . ,yn(t)
are linearly independent if and only if the vectors y1(t), . . . ,yn(t) are linearly
independent for any t. We recall that y1(t), . . . ,yn(t) are linearly independent
if and only if

Y (t) = (y1(t), . . . ,yn(t))

is invertible or if and only if ”the Wronskian” w(t) = detY (t) is non-zero. To
find n linearly independent solutions, we search for y1(t), . . . ,yn(t) such that
y1(0) = e1, . . . ,yn(0) = en, that is Y (0) = Idn (the identity matrix). From
there follows:
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Proposition: Every solution y(t) of (7.23) is of the form

y(t) =

n∑
i=1

ciyi(t)

Matricial differential equation. Therefore, we are trying to solve a differ-
ential equation for a matrix n× n Y (t):

Y ′(t) = AY (t), Y (0) = Idn = 1. (7.24)

Its analogy to the equation with one function is perfect: in this case the solution
was y(t) = exp(At) (see Chapter 7.2) In this case, for a matrix A ∈ Mn,n(C)
we define the exponential by the series

exp(A) =

∞∑
k=0

Ak

k!
= 1 +A+

A2

2
+ . . . .

This series converges absolutely in regards to the norm ||A||2. Using the results
on absolutely convergent series we have the following result:

Theorem - solution of the matricial differential equation. The solution
of (7.24) is given by

Y (t) = exp(At) (7.25)

and the solution to the Cauchy problem

y′(t) = Ay(t), y(0) = y0 (7.26)

is given by
y(t) = exp(At)y0 (7.27)

In what follows we present some useful results for calculating exp(A).

Proposition - Properties of the exponential function. LetA,B ∈Mn,n(C).
Then,

1.
exp(A) exp(B) = exp(A+B) if [A,B] := AB −BA = 0,

2.
exp(B−1AB) = B−1 exp(A)B if detB 6= 0.

3.

exp(A) = lim
k→∞

(
1 +

A

k

)k
.

4.
det(exp(A)) = eTr(A).

5. For a diagonal matrix:

exp(

n∑
k=1

λkEkk) =

n∑
k=1

eλkEkk.
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Examples.

1.

A =

(
0 1
0 0

)
, exp(At) = E2 +At =

(
1 t
0 1

)
since A2 = A3 = . . . = 0.

2.

A =

(
0 1
−1 0

)
, exp(At) =

(
cos t sin t
− sin t cos t

)
since A2n = (−1)nE2, A2n+1 = (−1)nA.

3.

A =

(
a 0
0 b

)
, exp(At) =

(
eat 0
0 ebt

)
The idea is to simplify the matrix by transforming it (for example to diago-
nalize it if possible) to calculate its exponential. This procedure is linked to
determining the eigenvalues and eigenvectors.
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