Nonlinear PDE models with stochastic fractional perturbation

Aurélien DEYA

Institut Elie Cartan, Nancy (France)

Virtual Ascona, July 2020

Outline

- Introduction
- 2 Step 1: identify the (future) regularity of *u*
- 3 Step 2: solve the equation in the regular case $\alpha_{d,H} > 0$
- **4** Step 3: the rough case $\alpha_{d,H} \leq 0$

The general model

We consider the following general nonlinear SPDE model:

$$\mathcal{L}u = \mathbf{u}^2 + \dot{B}, \quad t \in [0, T], \, x \in \mathbb{R}^d,$$

where:

- ullet $\mathcal L$ can be either
 - (h) the heat operator: $\mathcal{L}^{(h)}u = \partial_t u \Delta u$ $(u_0 = \phi)$
 - (w) the wave operator: $\mathcal{L}^{(\mathbf{w})}u=\partial_t^2u-\Delta u$ $(u_0=\phi_1,(\partial_t u)_0=\phi_2)$
 - (s) the Schrödinger operator: $\mathcal{L}^{(s)}u=\imath\partial_t u-\Delta u \quad (u_0=\phi)$
- \dot{B} is a space-time fractional noise

Space-time fractional noise

Definition. We call a space-time fractional Brownian motion of Hurst index $H=(H_0,H_1,\ldots,H_d)\in(0,1)^{d+1}$ any centered Gaussian process $B:\Omega\times([0,T]\times\mathbb{R}^d)\to\mathbb{R}$ with covariance given by

$$\mathbb{E}\big[B_s(x)B_t(y)\big] = R_{H_0}(s,t) \prod_{i=1}^d R_{H_i}(x_i,y_i) \; ,$$
 where $R_H(a,b) := \frac{1}{2}(|a|^{2H} + |b|^{2H} - |a-b|^{2H}) \; .$

Definition. We call a **space-time fractional noise** of Hurst index $H \in (0,1)^{d+1}$ the derivative (in the sense of the distributions)

$$\dot{B} := \partial_t \partial_{x_1} \cdots \partial_{x_d} B.$$

Remark. $H_0 = H_1 = \ldots = H_d = \frac{1}{2} \Longrightarrow$ classical space-time white noise.

Possible motivations

$$\mathcal{L}u = u^2 + \dot{B}, \quad t \in [0, T], \, x \in \mathbb{R}^d. \tag{1}$$

Eq. (1) is the most basic stochastic perturbation of the classical PDE

$$\mathcal{L}u = u^2$$

---- "Nonlinear PDE with power nonlinearity"

Eq. (1) is the most basic nonlinear extension of the stochastic PDE

$$\mathcal{L}u = \dot{B}$$

whose solution is explicitly given by

$$u = G * \dot{B}$$

where G is the Green kernel associated with \mathcal{L} .

Why a fractional noise?

$$\mathcal{L}u = u^2 + \dot{B}, \quad t \in [0, T], x \in \mathbb{R}^d.$$

- More general than a white noise + no need for "martingale" property
- Study the transition

$$H_i pprox 1$$
 Regular (classical) PDE

Continuous transition

 $H_i = \frac{1}{2}$ White noise

Outline

- Introduction
- 2 Step 1: identify the (future) regularity of *u*
- **3** Step 2: solve the equation in the regular case $\alpha_{d,H} > 0$
- **4** Step 3: the rough case $\alpha_{d,H} \leq 0$

The starting point of our analysis is the mild form of the equation:

$$u = G_t * \phi + G * u^2 + \bigcap,$$

where ϕ is a regular initial condition, G is the Green kernel associated with \mathcal{L} , and the symbol \bigcap refers to "linear solution"

$$\stackrel{\frown}{:}=G*\dot{B}.$$

- \Longrightarrow The regularity of u is expected to be the same as the one of ${ extstyle \cap}$
- \Longrightarrow **Step 1:** Identify the regularity of ?.

Due to the roughness of the noise \dot{B} , the exact definition and regularity of

$$P := G * \dot{B}$$

are not exactly standard issues...

The starting point of our analysis is the mild form of the equation:

$$u = G_t * \phi + G * u^2 + \bigcap,$$

where ϕ is a regular initial condition, G is the Green kernel associated with \mathcal{L} , and the symbol \bigcap refers to "linear solution"

$$\stackrel{\frown}{\mathbf{P}} := \mathbf{G} * \dot{\mathbf{B}}.$$

- \Longrightarrow The regularity of u is expected to be the same as the one of \ref{p}
- \Longrightarrow **Step 1:** Identify the regularity of \bigcirc .

Due to the roughness of the noise \dot{B} , the exact definition and regularity of

$$P := G * \dot{B}$$

are not exactly standard issues...

The starting point of our analysis is the mild form of the equation:

$$u = G_t * \phi + G * u^2 + \bigcap,$$

where ϕ is a regular initial condition, G is the Green kernel associated with \mathcal{L} , and the symbol \bigcap refers to "linear solution"

$$\stackrel{\frown}{\mathbf{G}} := \mathbf{G} * \dot{\mathbf{B}}.$$

- \Longrightarrow The regularity of u is expected to be the same as the one of \bigcirc
- \Longrightarrow **Step 1:** Identify the regularity of \bigcirc .

Due to the roughness of the noise \dot{B} , the exact definition and regularity of

are not exactly standard issues...

Study of $\widehat{\ }:=G*\dot{B}\to {\sf based}$ on an approximation procedure: Start from a ${\cal C}^\infty$ approximation B^n of B, and study the convergence of

$${\mathop{\bigcap}}^n:=G\ast\dot{B}^n,\quad\text{where }\dot{B}^n:=\partial_t\partial_{x_1}\cdots\partial_{x_d}B^n.$$

The approximation B^n can for instance be given by:

(i) A mollifying sequence, that is, for ho test-function with $\int_{\mathbb{R}^{d+1}}
ho = 1$,

$$B^n := \rho_n * B$$
, where $\rho_n(s, x) = 2^{(d+1)n} \rho(2^n s, 2^n x)$.

(ii) A discrete approximation along a grid: if $(t,x) \in [\frac{i}{n},\frac{i+1}{n}] \times [\frac{j}{n},\frac{j+1}{n}]$

$$\dot{B}^n_{t,x} := B_{rac{i+1}{n},rac{j+1}{n}} - B_{rac{i}{n},rac{j+1}{n}} - B_{rac{i+1}{n},rac{j}{n}} + B_{rac{i}{n},rac{j}{n}}.$$

Study of $\begin{picture}(1,0) \put(0,0){\line(0,0){100}} \put(0,0){\line($

$${\displaystyle \mathop{\bigcap}^n}:=G\ast\dot{B}^n,\quad\text{where }\dot{B}^n:=\partial_t\partial_{x_1}\cdots\partial_{x_d}B^n.$$

The approximation B^n can for instance be given by:

(i) A mollifying sequence, that is, for ho test-function with $\int_{\mathbb{R}^{d+1}}
ho = 1$,

$$B^n := \rho_n * B$$
, where $\rho_n(s, x) = 2^{(d+1)n} \rho(2^n s, 2^n x)$.

(ii) A discrete approximation along a grid: if $(t,x) \in [rac{i}{n},rac{i+1}{n}] imes [rac{j}{n},rac{j+1}{n}]$

$$\dot{B}^n_{t, imes} := B_{rac{j+1}{n}, rac{j+1}{n}} - B_{rac{j}{n}, rac{j+1}{n}} - B_{rac{j+1}{n}, rac{j}{n}} + B_{rac{j}{n}, rac{j}{n}}.$$

Study of $\begin{picture}(1,0) \put(0,0){\line(0,0){100}} \put(0,0){\line($

$${\cite{figuresize}}^n:=G*\dot{B}^n,\quad\text{where }\dot{B}^n:=\partial_t\partial_{x_1}\cdots\partial_{x_d}B^n.$$

The approximation B^n can for instance be given by:

(i) A mollifying sequence, that is, for ho test-function with $\int_{\mathbb{R}^{d+1}}
ho = 1$,

$$B^n := \rho_n * B$$
, where $\rho_n(s, x) = 2^{(d+1)n} \rho(2^n s, 2^n x)$.

(ii) A discrete approximation along a grid: if $(t,x) \in \left[\frac{i}{n}, \frac{i+1}{n}\right] \times \left[\frac{j}{n}, \frac{j+1}{n}\right]$,

$$\dot{B}^n_{t,x} := B_{\frac{i+1}{n},\frac{j+1}{n}} - B_{\frac{i}{n},\frac{j+1}{n}} - B_{\frac{i+1}{n},\frac{j}{n}} + B_{\frac{i}{n},\frac{j}{n}}.$$

Proposition. Let $H = (H_0, H_1, ..., H_d) \in (0, 1)^{d+1}$.

Then, for all T>0 and $\alpha<\alpha_{d,H}$, the sequence $({\begin{subarray}{c}}^n=G*\dot{B}^n)_{n\geq 1}$ converges (almost surely) to some limit ${\begin{subarray}{c}}$ in the space

$$\mathcal{C}([0,T];\mathcal{W}^{\boldsymbol{\alpha}}(\mathbb{R}^d)),$$

with $\alpha_{d,H} \in \mathbb{R}$ defined as

\mathcal{L}	α_{H}
$\mathcal{L}^{ extsf{(h)}} = \partial_t - \Delta$	$\alpha_{d,H}^{(h)} := 2H_0 + H_+ - d$
$\mathcal{L}^{(\mathbf{w})} = \partial_t^2 - \Delta$	$\alpha_{d,H}^{(\mathbf{w})} := H_0 + H_+ - (d - \frac{1}{2})$
$\mathcal{L}^{(s)} = \imath \partial_t - \Delta$	$\alpha_{d,H}^{(s)} := 2H_0 + H_+ - (d+1)$

where $H_+ := \sum_{i=1}^d H_i$.

The limit $\frac{1}{2}$ is the same for the two approximations (i)-(ii) of B^n .

Outline

- Introduction
- 2 Step 1: identify the (future) regularity of *u*
- **3** Step 2: solve the equation in the regular case $\alpha_{d,H} > 0$
- **4** Step 3: the rough case $\alpha_{d,H} \leq 0$

The regular case

Assume that $\alpha_{d,H} > 0$, so $\mathcal{O} \in \mathcal{C}([0,T]; \mathcal{W}^{\alpha})$ for every $0 < \alpha < \alpha_{d,H}$.

$$u = G_t * \phi + G * \frac{u^2}{t} + \stackrel{?}{\uparrow}, \quad t \in [0, T], x \in \mathbb{R}^d.$$
 (2)

 \implies We can interpret u^2 as a standard product of functions

Theorem. Assume that $\alpha_{d,H} > 0$.

Then, almost surely, Equation (2) admits a unique solution in $\mathcal{C}([0,T];\mathcal{W}^{\alpha})$, for $0<\alpha<\alpha_{d,H}$ and T>0 small enough, provided d satisfies

\mathcal{L}	d	Key ingredient
$\mathcal{L}^{(h)} = \partial_t - \Delta$		Properties of the heat semigroup
$\mathcal{L}^{(w)} = \partial_t^2 - \Delta$		(Wave) Strichartz inequalities
$\mathcal{L}^{(s)} = \imath \partial_t - \Delta$		(Schröd.) Strichartz inequalities

The regular case

Assume that $\alpha_{d,H} > 0$, so $\mathcal{O} \in \mathcal{C}([0,T]; \mathcal{W}^{\alpha})$ for every $0 < \alpha < \alpha_{d,H}$.

$$u = G_t * \phi + G * u^2 + ?, \quad t \in [0, T], x \in \mathbb{R}^d.$$
 (2)

 \implies We can interpret u^2 as a standard product of functions

Theorem. Assume that $\alpha_{d,H} > 0$.

Then, almost surely, Equation (2) admits a unique solution in $\mathcal{C}([0,T];\mathcal{W}^{\alpha})$, for $0<\alpha<\alpha_{d,H}$ and T>0 small enough, provided d satisfies

\mathcal{L}	d	Key ingredient
$\mathcal{L}^{ extsf{(h)}} = \partial_t - \Delta$	$d \geq 1$	Properties of the heat semigroup
$\mathcal{L}^{(w)} = \partial_t^2 - \Delta$	$1 \le d \le 4$	(Wave) Strichartz inequalities
$\mathcal{L}^{(\mathbf{s})} = \imath \partial_t - \Delta$	$1 \le d \le 4$	(Schröd.) Strichartz inequalities

Outline

- Introduction
- 2 Step 1: identify the (future) regularity of *u*
- **3** Step 2: solve the equation in the regular case $\alpha_{d,H} > 0$
- **4** Step 3: the rough case $\alpha_{d,H} \leq 0$

Analysis of the rough case

If $\alpha_{d,H} \leq 0$, then $\frac{1}{2}$ must be treated as a distribution of negative order:

$$\mathbf{P} \in \mathcal{C}([0, T]; \mathcal{W}^{\alpha}), \quad \text{for } \alpha < \alpha_{d,H} \leq 0.$$

Problem: how to interpret the non-linearity u^2 in the equation

$$u = G_t * \phi + G * \frac{u^2}{2} + \stackrel{\frown}{\uparrow}, \quad t \in [0, T], x \in \mathbb{R}^d.$$

Da Prato-Debussche trick: consider the equation satisfied by the process $v := u - \stackrel{\bigcirc}{\circ}$, namely

$$v = G_t * \phi + G * v^2 + 2 G * (v \cdot \stackrel{\bigcirc}{\downarrow}) + G * (\stackrel{\bigcirc}{\downarrow})^2.$$
 (3)

Strategy:

- (1) Use renormalization and stochastic arguments to interpret $\binom{0}{1}^2$
- (2) Use the properties of G to control $G*(v \cdot \bigcirc)$ and $G*(\bigcirc)^2$ as functions
- (3) Solve Equation (3) in a suitable space of functions.

Analysis of the rough case

If $\alpha_{d,H} \leq 0$, then \bigcap must be treated as a distribution of negative order:

$$\mathbf{P} \in \mathcal{C}([0, T]; \mathcal{W}^{\alpha}), \quad \text{for } \alpha < \alpha_{d,H} \leq 0.$$

Problem: how to interpret the non-linearity u^2 in the equation

$$u = G_t * \phi + G * u^2 + \gamma, \quad t \in [0, T], x \in \mathbb{R}^d.$$

Da Prato-Debussche trick: consider the equation satisfied by the process $v := u - \stackrel{\frown}{\circ}$, namely

$$v = G_t * \phi + G * v^2 + 2 G * (v \cdot \bigcirc) + G * (\bigcirc)^2.$$
 (3)

Strategy:

- (1) Use renormalization and stochastic arguments to interpret $(?)^2$
- (2) Use the properties of G to control $G*(v \cdot P)$ and $G*(P)^2$ as functions
- (3) Solve Equation (3) in a suitable space of functions.

Analysis of the rough case

If $\alpha_{d,H} \leq 0$, then $\frac{1}{2}$ must be treated as a distribution of negative order:

$$\mathbf{P} \in \mathcal{C}([0, T]; \mathcal{W}^{\alpha}), \quad \text{for } \alpha < \alpha_{d,H} \leq 0.$$

Problem: how to interpret the non-linearity u^2 in the equation

$$u = G_t * \phi + G * \frac{u^2}{t} + \gamma, \quad t \in [0, T], x \in \mathbb{R}^d.$$

Da Prato-Debussche trick: consider the equation satisfied by the process $v := u - \stackrel{\frown}{\cap}$, namely

$$v = G_t * \phi + G * v^2 + 2 G * (v \cdot \bigcirc) + G * (\bigcirc)^2.$$
 (3)

Strategy:

- (1) Use renormalization and stochastic arguments to interpret $(?)^2$
- (2) Use the properties of G to control $G*(v \cdot ?)$ and $G*(?)^2$ as functions
- (3) Solve Equation (3) in a suitable space of functions.

Interpretation of $(\bullet)^2$

Wick renormalization: consider the approximation $\bigcap^n := G * \dot{B}^n$ and set

Proposition. Recall that $\bigcap \in \mathcal{C}([0,T];\mathcal{W}^{\alpha})$ for every $\alpha < \alpha_{d,H} \leq 0$

Then, for all $d \geq 1$, T > 0 and $\alpha < \alpha_{d,H} \leq 0$, the sequence $(\mathbb{Q},\mathbb{Q}^n)_{n \geq 1}$ converges (almost surely) to some limit \mathbb{Q} in the space $\mathcal{C}([0,T];\mathcal{W}^{2\alpha})$ provided $\alpha_{d,H}$ satisfy

\mathcal{L}	$\alpha_{d,H}$
$\partial_t - \Delta$	
$\partial_t^2 - \Delta$	
$i\partial_t - \Delta$	

Interpretation of $(\bullet)^2$

Wick renormalization: consider the approximation $\bigcap^n := G * \dot{B}^n$ and set

$$\bigcirc^n(t,x) := (\bigcirc^n(t,x))^2 - \sigma^n(t,x) \;, \quad \text{with } \sigma^n(t,x) := \mathbb{E}\big[(\bigcirc^n(t,x))^2\big] \;.$$

Proposition. Recall that $\P \in \mathcal{C}([0,T]; \mathcal{W}^{\alpha})$ for every $\alpha < \alpha_{d,H} \leq 0$.

Then, for all $d \geq 1$, T > 0 and $\alpha < \alpha_{d,H} \leq 0$, the sequence $({}^{\bigcirc})_{n \geq 1}$ converges (almost surely) to some limit ${}^{\bigcirc}$ in the space $\mathcal{C}([0,T];\mathcal{W}^{2\alpha})$, provided $\alpha_{d,H}$ satisfy

$\mathcal L$	$lpha_{d,H}$
$\partial_t - \Delta$	$\alpha_{d,H}^{(h)} > -\frac{1}{2}$
$\partial_t^2 - \Delta$	$\alpha_{d,H}^{(\mathbf{w})} > -\frac{1}{4}$
$i\partial_t - \Delta$	$\alpha_{d,H}^{(s)} > -\frac{1}{4}$

Wellposedness results in the rough case

Recall that $P \in \mathcal{C}([0, T]; \mathcal{W}^{\alpha})$, for every $\alpha < \alpha_{d,H} \leq 0$.

Theorem. Almost surely, and for T > 0 small enough, the equation

$$v = G_t * \phi + G * v^2 + 2 G * (v \cdot) + G * \bigcirc$$

admits a unique solution in a suitable space of functions, provided d and $\alpha_{d,H}$ satisfy

\mathcal{L}	d	$lpha_{d,H}$	Key ingredient
$\partial_t - \Delta$	$d \ge 1$	$lpha_{d,H}^{ ext{(h)}}>-rac{1}{2}$	Regularizing properties of G
$\partial_t^2 - \Delta$	$1 \le d \le 4$	$\alpha_{d,H}^{(w)} > -\frac{1}{4}$	(Wave) Strichartz inequalities
$i\partial_t - \Delta$	$1 \le d \le 3$	$\alpha_{d,H}^{(s)} pprox 0$	Local regularizing properties

Remark. •
$$d = 2$$
, $H_0 = H_1 = H_2 = \frac{1}{2}$ $\implies \alpha_{d,H}^{(w)} = 0$.
• $d = 2$, $H_0 = 1$, $H_1 = H_2 = \frac{1}{2}$ $\implies \alpha_{d,H}^{(s)} = 0$.

Wellposedness results in the rough case

Recall that $\P \in \mathcal{C}([0, T]; \mathcal{W}^{\alpha})$, for every $\alpha < \alpha_{d,H} \leq 0$.

Theorem. Almost surely, and for T > 0 small enough, the equation

$$v = G_t * \phi + G * v^2 + 2 G * (v \cdot) + G * \bigcirc$$

admits a unique solution in a suitable space of functions, provided d and $\alpha_{d,H}$ satisfy

\mathcal{L}	d	$\alpha_{d,H}$	Key ingredient
$\partial_t - \Delta$	$d \ge 1$	$\alpha_{d,H}^{(h)}>-rac{1}{2}$	Regularizing properties of G
$\partial_t^2 - \Delta$	$1 \le d \le 4$	$\alpha_{d,H}^{(w)} > -\frac{1}{4}$	(Wave) Strichartz inequalities
$i\partial_t - \Delta$	$1 \le d \le 3$	$\alpha_{d,H}^{(s)} pprox 0$	Local regularizing properties

Remark. •
$$d = 2$$
, $H_0 = H_1 = H_2 = \frac{1}{2} \implies \alpha_{d,H}^{(w)} = 0$.
• $d = 2$, $H_0 = 1$, $H_1 = H_2 = \frac{1}{2} \implies \alpha_{d,H}^{(s)} = 0$.

Thank you!

- A. Deya: A non-linear wave equation with fractional perturbation. Ann. Probab. 47 (2019), no. 3, 1775-1810.
- A. Deya: On a non-linear 2D fractional wave equation. To appear in Ann. Inst. H. Poincaré Probab. Statist 56 (2020), no.1, 477-501.
- A. Deya, N. Schaeffer and L. Thomann: A non-linear Schrödinger equation with fractional perturbation. Submitted.

A possible interpretation of renormalization

Corollary. In the setting of the "rough" theorem, let $(u^n)_{n\geq 1}$ be the sequence of solutions to the renormalized equation

$$\begin{cases} \mathcal{L}u^n = (u^n)^2 - \sigma^n + \dot{B}^n, & t \in [0, T], x \in \mathbb{R}^d, \\ u^n(0, .) = \phi. \end{cases}$$

Then, almost surely, there exists a time $T_0 > 0$ such that $u^n \to u$ in the space $\mathcal{C}([0, T_0]; \mathcal{W}^{\alpha})$, for $\alpha < \alpha_{H,d} \leq 0$.