Ergodicity & CLT for SPDE
Stochastic Analysis, Random Fields & Applications
July 2-3, 2020
Davar Khoshnevisan (University of Utah)
Joint work with
Le Chen (Emory University)
David Nualart (University of Kansas)
Fei Pu (University of Utah)
Le Chen, Fei Pu, and David Nualart
Robert C. Dalang, Francesco Russo, and Marta Sanz-Solé
The Basic Problem

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x))\eta(t, x) \text{ for } t > 0 \text{ and } x \in \mathbb{R}^d \]
The Basic Problem

- \(\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \) for \(t > 0 \) and \(x \in \mathbb{R}^d \)
- subject to (say) \(u(0, x) \equiv 1 \) for all \(x \in \mathbb{R}^d \);
The Basic Problem

\[\frac{\partial}{\partial t} u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \text{ for } t > 0 \text{ and } x \in \mathbb{R}^d \]

- subject to (say) \(u(0, x) \equiv 1 \) for all \(x \in \mathbb{R}^d \);
- \(\sigma : \mathbb{R} \to \mathbb{R} \) is non random and Lipschitz continuous;

Here is a simulation for the parabolic Anderson model driven by space-time white noise \(\sigma = \sigma(u) = u \), and \(t = 1 \) [thanks to Kunwoo Kim].
The Basic Problem

- \(\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x))\eta(t, x) \) for \(t > 0 \) and \(x \in \mathbb{R}^d \)
- subject to (say) \(u(0, x) \equiv 1 \) for all \(x \in \mathbb{R}^d \);
- \(\sigma : \mathbb{R} \to \mathbb{R} \) is non random and Lipschitz continuous;
- \(\eta \) is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered measure \(f \):
 \[
 \text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s)f(x - y) \quad \text{for } s, t \geq 0, x, y \in \mathbb{R}^d.
 \]
The Basic Problem

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \text{for } t > 0 \text{ and } x \in \mathbb{R}^d \]

subject to (say) \(u(0, x) \equiv 1 \) for all \(x \in \mathbb{R}^d \);

\(\sigma : \mathbb{R} \to \mathbb{R} \) is non random and Lipschitz continuous;

\(\eta \) is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered measure \(f \):

\[
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad \text{for } s, t \geq 0, x, y \in \mathbb{R}^d.
\]

Here is a simulation for the parabolic Anderson model driven by space-time white noise \[d = 1, f = \delta_0, \sigma(u) = u, \text{ and } t = 1 \]
[thanks to Kunwoo Kim]:

D. Khoshnevisan (U. Utah) Spatial Ergodicity for SPDEs June 10, 2020 3 / 17
The Basic Problem

\[\partial_t u = \frac{1}{2} u'' + u \eta \quad | \quad d = 1 \quad | \quad f = \delta_0 \quad | \quad u(0) \equiv 1 \]
The Basic Problem

\[\partial_t u = \frac{1}{2} u'' + u \eta \quad | \quad d = 1 \quad | \quad f = \delta_0 \quad | \quad u(0) \equiv 1 \]

- Macroscopically multifractal for every \(t > 0 \) when \(\sigma \asymp 1 \) and \(\sigma(u) \asymp u \) [K-Kim-Xiao, AoP, 2017]
The Basic Problem

\[\partial_t u = \frac{1}{2} u'' + u \eta \quad | \quad d = 1 \quad | \quad f = \delta_0 \quad | \quad u(0) \equiv 1 \]

- Macroscopically multifractal for every \(t > 0 \) when \(\sigma \asymp 1 \) and \(\sigma(u) \asymp u \) [K-Kim-Xiao, AoP, 2017]
- Macroscopically multifractal in space time when \(\sigma \asymp 1 \) and \(\sigma(u) \asymp u \) [K-Kim-Xiao, CMP, 2018]
The Basic Problem

\[\partial_t u = \frac{1}{2} u'' + u \eta \quad | \quad d = 1 \quad | \quad f = \delta_0 \quad | \quad u(0) \equiv 1 \]

- Macroscopically multifractal for every \(t > 0 \) when \(\sigma \asymp 1 \) and \(\sigma(u) \asymp u \) [K-Kim-Xiao, AoP, 2017]
- Macroscopically multifractal in space time when \(\sigma \asymp 1 \) and \(\sigma(u) \asymp u \) [K-Kim-Xiao, CMP, 2018]
Here, we want statements not about extremal peaks of the solution, but the general behavior of typical peaks.
Here, we want statements not about extremal peaks of the solution, but the general behavior of typical peaks.

Basic result: Often, the peaks look like shot noise.
The Basic Problem

\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

- Here, we want statements not about extremal peaks of the solution, but the general behavior of typical peaks.
- Basic result: Often, the peaks look like shot noise.
Here, we want statements not about extremal peaks of the solution, but the general behavior of typical peaks.

Basic result: Often, the peaks look like shot noise.

The ergodic behavior of \(x \mapsto u(t, x) \).
The SPDE
\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

- \[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \text{ for } t > 0 \text{ and } x \in \mathbb{R}^d \]
The SPDE

\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

- \[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \] for \(t > 0 \) and \(x \in \mathbb{R}^d \)

- subject to (say) \(u(0, x) \equiv 1 \) for all \(x \in \mathbb{R}^d \);
The SPDE
\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

- \[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \text{ for } t > 0 \text{ and } x \in \mathbb{R}^d \]
- subject to (say) \(u(0, x) \equiv 1 \) for all \(x \in \mathbb{R}^d \);
- \(\sigma : \mathbb{R} \to \mathbb{R} \) is non random and Lipschitz continuous;
The SPDE
\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

- \[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \] for \(t > 0 \) and \(x \in \mathbb{R}^d \);
- subject to (say) \(u(0, x) \equiv 1 \) for all \(x \in \mathbb{R}^d \);
- \(\sigma : \mathbb{R} \to \mathbb{R} \) is non random and Lipschitz continuous;
- \(\eta \) is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered measure \(f \):
 \[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s)f(x - y) \quad \text{for} \ s, t \geq 0, \ x, y \in \mathbb{R}^d. \]
The SPDE
\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in M \quad | \quad u(0) \equiv 1 \]

- \[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \text{ for } t > 0 \text{ and } x \in \mathbb{R}^d \]
- subject to (say) \[u(0, x) \equiv 1 \text{ for all } x \in \mathbb{R}^d \];
- \(\sigma : \mathbb{R} \to \mathbb{R} \) is non random and Lipschitz continuous;
- \(\eta \) is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered measure \(f \):
 \[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s)f(x - y) \text{ for } s, t \geq 0, x, y \in \mathbb{R}^d. \]
- I.e., \(\text{Cov} \left[\int \phi \, d\eta, \int \psi \, d\eta \right] = \int_0^\infty (\phi(s), \psi(s) \ast f)_{L^2(\mathbb{R}^d)} \, ds. \)
The **SPDE**

\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

- \[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \] for \(t > 0 \) and \(x \in \mathbb{R}^d \)
- subject to (say) \(u(0, x) \equiv 1 \) for all \(x \in \mathbb{R}^d \);
- \(\sigma : \mathbb{R} \to \mathbb{R} \) is non random and Lipschitz continuous;
- \(\eta \) is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered measure \(f \):
 \[
 \text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s)f(x - y) \quad \text{for } s, t \geq 0, x, y \in \mathbb{R}^d.
 \]
- I.e., \(\text{Cov}[\int \phi \, d\eta, \int \psi \, d\eta] = \int_0^\infty (\phi(s), \psi(s) \ast f)_{L^2(\mathbb{R}^d)} \, ds \).

Theorem (Dalang, 1999)

The solution to SPDE exists and is “unique” and is continuous in \(L^k(\mathbb{P}) \) for all \(k \geq 1 \) provided that

\[
\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty. \quad (D)
\]

This is NAS when \(\sigma \propto 1 \).
On Condition (D)

\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

\[\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \| z \|^2} < \infty. \quad (D) \]

Example

\[f = \delta_0 \] and \[\hat{f} = \delta_0 \] is in \(L^1(\mathbb{R}^d) \) [Wiener algebra] and \(f \in L^2(\mathbb{R}^d) \) \[\Leftrightarrow \hat{f} \in L^2(\mathbb{R}^d) \] and \(d \leq 3 \) [Cauchy–Schwarz ineq.]

\[f(x) \propto \| x \|^{2\beta} \] where \(\beta \in (0, d \wedge 2) \) [Riesz kernels]
On Condition (D)

\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

\[\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty. \quad (D) \]

Example

1. \(f = \delta_0 \) [\(\hat{f}(dx) = dx \)] and \(d = 1 \)
On Condition (D)

\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in M \quad | \quad u(0) \equiv 1 \]

\[\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty. \] (D)

Example

1. \(f = \delta_0 \) \([\hat{f}(dx) = dx]\) and \(d = 1 \)
2. \(f, \hat{f} \in L^1(\mathbb{R}^d) \) [Wiener algebra]
On Condition (D)

\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

\[\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty. \]

Example

1. \(f = \delta_0 \) \([\hat{f}(dx) = dx] \) and \(d = 1 \)
2. \(f, \hat{f} \in L^1(\mathbb{R}^d) \) [Wiener algebra]
3. \(f \in L^2(\mathbb{R}^d) \) \([\Leftrightarrow \hat{f} \in L^2(\mathbb{R}^d)] \) and \(d \leq 3 \) [Cauchy–Schwarz ineq.]
On Condition (D)

\[\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geq 1 \quad | \quad f \in \mathcal{M} \quad | \quad u(0) \equiv 1 \]

\[\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty. \]

(D)

Example

1. \(f = \delta_0 \) \([\hat{f}(dx) = dx]\) and \(d = 1 \)
2. \(f, \hat{f} \in L^1(\mathbb{R}^d) \) [Wiener algebra]
3. \(f \in L^2(\mathbb{R}^d) \) \([\Leftrightarrow \hat{f} \in L^2(\mathbb{R}^d)]\) and \(d \leq 3 \) [Cauchy–Schwarz ineq.]
4. \(f(x) \propto \|x\|^{-\beta} \) where \(\beta \in (0, d \wedge 2) \) [Riesz kernels]
It is not difficult to see that $x \mapsto u(t, x)$ is stationary for all $t > 0$.
Spatial Ergodicity

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

1. It is not difficult to see that \(x \mapsto u(t, x) \) is stationary for all \(t > 0 \)
2. Is it ergodic?
Spatial Ergodicity

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1\]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t-s) f(x-y) \quad | \quad \int_{\mathbb{R}^d} f(dx)/(1 + \|x\|^2) < \infty \cdots (D)\]

1. It is not difficult to see that \(x \mapsto u(t, x)\) is stationary for all \(t > 0\).
2. Is it ergodic?

Theorem (Chen-K-Nualart-Pu, 2019+)

\[\hat{f}\{0\} = 0 \iff \hat{f}\text{ has no atoms}\]

\[\hat{f}\{0\} = 0 \iff f([-N,N]^d) = o(N^d) \text{ as } N \to \infty\]

\[\text{If } f(dx) \ll dx \text{ then } \hat{f}\{0\} = 0 \iff |\mathbb{B}(0,N)| \int_{\mathbb{B}(0,N)} f(x) \, dx \to 0 \text{ as } N \to \infty\]
Spatial Ergodicity

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

1. It is not difficult to see that \(x \mapsto u(t, x) \) is stationary for all \(t > 0 \)
2. Is it ergodic?

Theorem (Chen-K-Nualart-Pu, 2019+)

(a) \(u(t) \) is ergodic for all \(t > 0 \) if \(\hat{f}\{0\} = 0 \) [iff when \(\sigma \propto 1 \): Maruyama (1949); Dym-McKean (1976)]
Spatial Ergodicity

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x))\eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s)f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + ||x||^2) < \infty \cdots (D) \]

1. It is not difficult to see that \(x \mapsto u(t, x) \) is stationary for all \(t > 0 \)
2. Is it ergodic?

Theorem (Chen-K-Nualart-Pu, 2019+)

(a) \(u(t) \) is ergodic for all \(t > 0 \) if \(\hat{f}\{0\} = 0 \) [iff when \(\sigma \propto 1: \text{Maruyama (1949); Dym-McKean (1976)} \)]

(b) \(\hat{f}\{0\} = 0 \) iff \(\hat{f} \) has no atoms
It is not difficult to see that \(x \mapsto u(t, x) \) is stationary for all \(t > 0 \).

Theorem (Chen-K-Nualart-Pu, 2019+)

1. \(u(t) \) is ergodic for all \(t > 0 \) if \(\hat{f}\{0\} = 0 \) [iff when \(\sigma \propto 1 \): Maruyama (1949); Dym-McKean (1976)]
2. \(\hat{f}\{0\} = 0 \) iff \(\hat{f} \) has no atoms
3. \(\hat{f}\{0\} = 0 \) iff \(f([-N, N]^d) = o(N^d) \) as \(N \to \infty \)
Spatial Ergodicity

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \mid \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad \mid \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

1. It is not difficult to see that \(x \mapsto u(t, x) \) is stationary for all \(t > 0 \)

2. Is it ergodic?

Theorem (Chen-K-Nualart-Pu, 2019+)

(a) \(u(t) \) is ergodic for all \(t > 0 \) if \(\hat{f}\{0\} = 0 \) [iff when \(\sigma \propto 1 \): Maruyama (1949); Dym-McKean (1976)]

(b) \(\hat{f}\{0\} = 0 \) iff \(\hat{f} \) has no atoms

(c) \(\hat{f}\{0\} = 0 \) iff \(f([-N, N]^d) = o(N^d) \) as \(N \to \infty \)

3. If \(f(dx) \ll dx \) then

\[\hat{f}\{0\} = 0 \quad \text{iff} \quad \frac{1}{|B(0, N)|} \int_{B(0, N)} f(x) \, dx \to 0 \quad \text{as} \quad N \to \infty \]
Let \(\{X(a)\}_{a \in \mathbb{R}^d} \) be a stationary random field. It is \textit{weakly mixing} [mixing in the sense of ergodic theory] if for all \(a_1, \ldots, a_n, b_1, \ldots, b_m \in \mathbb{R}^d \) and \(A_1, \ldots, A_m, B_1, \ldots, B_m \in \mathbb{R} \),

\[
P \{ X(a_i) < A_i , \; X(R + b_j) < B_j , \; \forall i \leq n, j \leq m \} \rightarrow P \{ X(a_i) < A_i , \; \forall i \leq n \} P \{ X(b_j) < B_j , \; \forall j \leq m \} \text{ as } \|R\| \rightarrow \infty
\]

Theorem (Chen-K-Nualart-Pu, 2019+)

\(u(t) \) is mixing for all \(t > 0 \) if for some, hence all, \(\lambda > 0 \),

\[
\lim_{\|R\| \rightarrow \infty} \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D)
\]
Weak Mixing

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t-s)f(x-y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(d\hat{x})/(1 + \|x\|^2) < \infty \ldots (D) \]

Let \(\{X(a)\}_{a \in \mathbb{R}^d} \) be a stationary random field. It is weakly mixing [mixing in the sense of ergodic theory] if for all \(a_1, \ldots, a_n, b_1, \ldots, b_m \in \mathbb{R}^d \) and \(A_1, \ldots, A_m, B_1, \ldots, B_m \in \mathbb{R}, \)

\[P \left\{ X(a_i) < A_i, X(R + b_j) < B_j, \forall i \leq n, j \leq m \right\} \]

\[\rightarrow P \left\{ X(a_i) < A_i, \forall i \leq n \right\} P \left\{ X(b_j) \leq B_j, \forall j \leq m \right\} \text{ as } \|R\| \rightarrow \infty \]

Theorem (Chen-K-Nualart-Pu, 2019+)

\(u(t) \) is mixing for all \(t > 0 \) if for some, hence all, \(\lambda > 0, \)

\[\lim_{\|x\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{ix \cdot z} \hat{f}(dz)}{\lambda + \|z\|^2} = 0. \]
Weak Mixing

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \mid \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad \mid \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Let \(\{X(a)\}_{a \in \mathbb{R}^d} \) be a stationary random field. It is **weakly mixing** [mixing in the sense of ergodic theory] if for all \(a_1, \ldots, a_n, b_1, \ldots, b_m \in \mathbb{R}^d \) and \(A_1, \ldots, A_m, B_1, \ldots, B_m \in \mathbb{R}, \)

\[
P \{X(a_i) < A_i, X(R + b_j) < B_j, \forall i \leq n, j \leq m\}
\]

\[
\to P \{X(a_i) < A_i, \forall i \leq n\} P \{X(b_j) < B_j, \forall j \leq m\} \text{ as } \|R\| \to \infty
\]

Theorem (Chen-K-Nualart-Pu, 2019+)

\(u(t) \) is mixing for all \(t > 0 \) if for some, hence all, \(\lambda > 0, \)

\[
\lim_{\|x\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{ix \cdot z} \hat{f}(dz)}{\lambda + \|z\|^2} = 0.
\]

Example

\(u(t) \) is mixing for all \(t > 0 \) if \(\hat{f}(dx) \ll dx \) [(D) + Riemann–Lebesgue]
A Hierarchy of conditions

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x))\eta(t, x) \]

| \[u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s)f(x - y) \]

| \[\int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

\[(D): \int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty \text{ implies spatial ergodicity} \]
A Hierarchy of conditions

\[\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x) \quad \mid \quad u(0,x) \equiv 1 \]

\[\text{Cov}[\eta(t,x), \eta(s,y)] = \delta_0(t-s) f(x-y) \quad \mid \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + ||x||^2) < \infty \cdots (D) \]

1. (D): \[\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + ||z||^2} < \infty \] implies spatial ergodicity

2. (D) + \[\lim_{||z|| \to \infty} \int_{\mathbb{R}^d} \frac{e^{iz \cdot x} \hat{f}(dz)}{1 + ||z||^2} = 0 \] implies mixing

All are NAS when \(\sigma \propto 1 \); \(\exists \) FCLTs; and the CLT holds in total variation!

\[\text{Theorem (Chen-K-Nualart-Pu 2020+)} \]

If \(0 < f(R^d) < \infty \) then for all \(g \in \text{Lip} \) with \(g(0) = 0 \) and \(\text{Lip}(g) = 1 \),

\[N^{d/2} \left(\frac{1}{N^d} \int_0^N dg(u(t,x)) dx - E[g(u(t,0))] \right) \Rightarrow N(0, \tau^2 g) \text{ as } N \to \infty. \]
A Hierarchy of conditions

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \mid \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s)f(x - y) \quad \mid \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

1. (D): \(\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty \) implies spatial ergodicity

2. (D) + \(\lim_{\|z\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{iz \cdot x} \hat{f}(dz)}{1 + \|z\|^2} = 0 \) implies mixing

Theorem (Chen-K-Nualart-Pu 2020+)

If \(0 < f(\mathbb{R}^d) < \infty + (D) \), then for all \(g \in \text{Lip} \) with \(g(0) = 0 \) and \(\text{Lip}(g) = 1 \),

\[
N^{d/2} \left(\frac{1}{N^d} \int_{[0, N]^d} g(u(t, x)) \, dx - E[g(u(t, 0))] \right) \Rightarrow N(0, \tau_g^2) \quad \text{as } N \to \infty.
\]
A Hierarchy of conditions

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

1. (D): \(\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty \) implies spatial ergodicity

2. (D) + \(\lim_{\|z\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{iz \cdot x} \hat{f}(dz)}{1 + \|z\|^2} = 0 \) implies mixing

Theorem (Chen-K-Nualart-Pu 2020+)

If \(0 < f(\mathbb{R}^d) < \infty + (D) \), then for all \(g \in \text{Lip} \) with \(g(0) = 0 \) and \(\text{Lip}(g) = 1 \),

\[N^{d/2} \left(\frac{1}{N^{d}} \int_{[0,N]^d} g(u(t, x)) dx - E[g(u(t,0))] \right) \Rightarrow N(0, \tau_g^2) \quad \text{as } N \to \infty. \]

3. All are NAS when \(\sigma \propto 1; \exists \text{FCLTs}; \) and the CLT holds in total variation!
A Hierarchy of conditions

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dz)/(1 + \|x\|^2) < \infty \cdot \cdot \cdot (D) \]

1. (D): \[\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty \] implies spatial ergodicity

2. (D) + \lim_{\|z\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{iz \cdot x} \hat{f}(dz)}{1 + \|z\|^2} = 0 \implies \text{mixing} \]

Theorem (Chen-K-Nualart-Pu 2020+)

If \(0 < f(\mathbb{R}^d) < \infty + (D) \), *then for all* \(g \in \text{Lip} \) *with* \(g(0) = 0 \) *and* \(\text{Lip}(g) = 1 \),

\[N^{d/2} \left(\frac{1}{N^d} \int_{[0,N]^d} g(u(t, x)) \, dx - E[g(u(t, 0))] \right) \to N(0, \tau_g^2) \quad \text{as} \ N \to \infty. \]

3. All are NAS when \(\sigma \propto 1 \); \(\exists \) FCLTs; and the CLT holds in total variation!

4. The assumption \(f(\mathbb{R}^d) < \infty \) can be dropped sometimes, but the \(N^{d/2} \)-rate of CLT can then change
A Hierarchy of conditions

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dz)/(1 + \|x\|^2) < \infty \cdots (D) \]

1. (D): \(\int_{\mathbb{R}^d} \frac{\hat{f}(dz)}{1 + \|z\|^2} < \infty \) implies spatial ergodicity

2. (D) + \(\lim_{\|z\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{iz \cdot x} \hat{f}(dz)}{1 + \|z\|^2} = 0 \) implies mixing

Theorem (Chen-K-Nualart-Pu 2020+)

If \(0 < f(\mathbb{R}^d) < \infty \) + (D), then for all \(g \in \text{Lip} \) with \(g(0) = 0 \) and \(\text{Lip}(g) = 1 \),

\[N^{d/2} \left(\frac{1}{N^d} \int_{[0,N]^d} g(u(t, x)) \, dx - \mathbb{E}[g(u(t, 0))] \right) \Rightarrow \mathcal{N}(0, \tau_g^2) \quad \text{as} \ N \to \infty. \]

3. All are NAS when \(\sigma \propto 1 \); \(\exists \) FCLTs; and the CLT holds in total variation!

4. The assumption \(f(\mathbb{R}^d) < \infty \) can be dropped sometimes, but the \(N^{d/2} \)-rate of CLT can then change

5. \(g \in \text{Lip} \) can be extended in various directions
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \partial_x^2 u(t, x) + u(t, x) \eta(t, x) \quad \mid \quad u(0) = \delta_0, \ d = 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) \delta_0(x - y) \quad \mid \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Suppose instead that \(u(0) = \delta_0 \), and let us specialize to \(f = \delta_0 \) and \(d = 1 \) [we understand \(d > 1 \) as well, to a very good extent]
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \partial_x^2 u(t, x) + u(t, x) \eta(t, x) \quad | \quad u(0) = \delta_0, \ d = 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) \delta_0(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Suppose instead that \(u(0) = \delta_0 \), and let us specialize to \(f = \delta_0 \) and \(d = 1 \) [we understand \(d > 1 \) as well, to a very good extent]

Proposition (Amir-Corwin-Quastel 2011)

\[x \mapsto U(t, x) = \frac{u(t, x)}{p_t(x)} \text{ is stationary for all } t > 0, \text{ where } p_t(x) = \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}}. \]
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \partial_x^2 u(t, x) + u(t, x) \eta(t, x) \quad | \quad u(0) = \delta_0, \quad d = 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) \delta_0(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + ||x||^2) < \infty \cdots (D) \]

Suppose instead that \(u(0) = \delta_0 \), and let us specialize to \(f = \delta_0 \) and \(d = 1 \) [we understand \(d > 1 \) as well, to a very good extent]

Proposition (Amir-Corwin-Quastel 2011)

\[x \mapsto U(t, x) = \frac{u(t, x)}{p_t(x)} \text{ is stationary for all } t > 0, \text{ where } p_t(x) = \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}}. \]

Theorem (Chen-K-Nualart-Pu 2020+)

\(U(t) \) is weakly mixing \(\forall t > 0 \), and \(S_{N,t} := N^{-1} \int_0^N [U(t, x) - 1] \, dx \) satisfies

\[\sqrt{\frac{N}{\log N}} S_{N,t} \xrightarrow{TV} N(0, 2t) \quad \text{as } N \to \infty. \]
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \mid \quad u(0) = \delta_0, \quad d \geq 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s)f(x - y) \quad \mid \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Theorem (K-Nualart-Pu 2020+)

\[\exists \text{ CLT in TV. And:} \]

\[\exists \text{ CLT in TV. And:} \]
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0) = \delta_0, \quad d \geq 1 \]

Cov[\(\eta(t, x), \eta(s, y) \)] = \(\delta_0(t-s)f(x-y) \) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D)

Theorem (K-Nualart-Pu 2020+)

\[\exists \text{ CLT in TV. And:} \]

1. If \(d = 1 \) and \(f(\mathbb{R}) < \infty \), then \(\text{Var}(S_{N,t}) \asymp N^{-1} \log N \). Moreover:

\[\int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0) = \delta_0, \ d \geq 1 \]

\[\text{Cov} [\eta(t, x), \eta(s, y)] = \delta_0 (t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Theorem (K-Nualart-Pu 2020+)

∃ CLT in TV. And:

1. If \(d = 1 \) and \(f(\mathbb{R}) < \infty \), then \(\text{Var}(S_{N,t}) \asymp N^{-1} \log N \). Moreover:

 (a) If \(f = c\delta_0 \) for some \(c > 0 \) then \(\text{Var}(S_{N,t}) \sim 2tf(\mathbb{R})N^{-1} \log N \).
The effect of initial data
\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0) = \delta_0, \quad d \geq 1 \]
\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots \text{(D)} \]

Theorem (K-Nualart-Pu 2020+)

\[\exists \text{ CLT in TV. And:} \]

1. If \(d = 1 \) and \(f(\mathbb{R}) < \infty \), then \(\text{Var}(S_{N,t}) \asymp N^{-1} \log N \). Moreover:
 (a) If \(f = c \delta_0 \) for some \(c > 0 \) then \(\text{Var}(S_{N,t}) \sim 2 t f(\mathbb{R}) N^{-1} \log N \)
 (b) If \(f \) is a Rajchman measure, then \(\text{Var}(S_{N,t}) \sim t f(\mathbb{R}) N^{-1} \log N \).
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \mid u(0) = \delta_0, \; d \geq 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t-s) f(x-y) \quad \mid \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Theorem (K-Nualart-Pu 2020+)

\[\exists \text{ CLT in TV. And:} \]

1. If \(d = 1 \) and \(f(\mathbb{R}) < \infty \), then \(\text{Var}(S_{N,t}) \asymp N^{-1} \log N \). Moreover:

 (a) If \(f = c\delta_0 \) for some \(c > 0 \) then \(\text{Var}(S_{N,t}) \sim 2tf(\mathbb{R})N^{-1} \log N \)

 (b) If \(f \) is a Rajchman measure, then \(\text{Var}(S_{N,t}) \sim tf(\mathbb{R})N^{-1} \log N \).

2. If \(d \geq 2 \), then \(\mathcal{R}(f) := \lim_{N \to \infty} N\text{Var}(S_{N,t}) \) exists and is in \((0, \infty] \).
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0) = \delta_0, \ d \geq 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Theorem (K-Nualart-Pu 2020+)

∃ CLT in TV. And:

1. If \(d = 1 \) and \(f(\mathbb{R}) < \infty \), then \(\text{Var}(S_{N,t}) \asymp N^{-1} \log N \). Moreover:
 - (a) If \(f = c\delta_0 \) for some \(c > 0 \) then \(\text{Var}(S_{N,t}) \sim 2tf(\mathbb{R})N^{-1} \log N \)
 - (b) If \(f \) is a Rajchman measure, then \(\text{Var}(S_{N,t}) \sim tf(\mathbb{R})N^{-1} \log N \).

2. If \(d \geq 2 \), then \(R(f) := \lim_{N \to \infty} N\text{Var}(S_{N,t}) \) exists and is in \((0, \infty]\).

3. If \(d \geq 2 \), then \(R(f) < \infty \iff \int_{\mathbb{R}^d} \frac{f(dx)}{\|x\|^{d-1}} < \infty \iff \int_{\mathbb{R}^d} \frac{\hat{f}(dx)}{\|x\|} < \infty \);
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \text{with} \quad u(0) = \delta_0, \quad d \geq 1 \]

Cov[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad \text{such that} \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdot \cdot \cdot (D)

Theorem (K-Nualart-Pu 2020+)

\[\exists \text{ CLT in TV. And:} \]

1. **If** \(d = 1 \) and \(f(\mathbb{R}) < \infty \), \(\text{then} \ Var(S_{N,t}) \asymp N^{-1} \log N \). Moreover:

 (a) **If** \(f = c\delta_0 \) for some \(c > 0 \) \(\text{then} \ Var(S_{N,t}) \sim 2tf(\mathbb{R})N^{-1} \log N \)

 (b) **If** \(f \) is a Rajchman measure, \(\text{then} \ Var(S_{N,t}) \sim tf(\mathbb{R})N^{-1} \log N \).

2. **If** \(d \geq 2 \), \(\mathcal{R}(f) := \lim_{N \to \infty} N \text{Var}(S_{N,t}) \) **exists and is in** \((0, \infty] \).

3. **If** \(d \geq 2 \), \(\mathcal{R}(f) < \infty \iff \int_{\mathbb{R}^d} \frac{f(dx)}{\|x\|^{d-1}} < \infty \iff \int_{\mathbb{R}^d} \frac{\hat{f}(dx)}{\|x\|} < \infty \);

4. **If** \(d \geq 2 \) and \(f(dx) = \|x\|^{-\beta} \) for \(\beta \in (0, d \land 2) \), \(\text{then:} \ \exists \ 3 \text{ different phases:} \)
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \mid \quad u(0) = \delta_0, \quad d \geq 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t-s) f(x-y) \quad \mid \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Theorem (K-Nualart-Pu 2020+)

If \(d \geq 2 \) and \(f(dx) = \|x\|^{-\beta} dx \) for \(\beta \in (0, d \wedge 2) \) then \(\exists \) CLT in TV, and:
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0) = \delta_0, \quad d \geq 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Theorem (K-Nualart-Pu 2020+)

If \(d \geq 2 \) and \(f(dx) = \|x\|^{-\beta} dx \) for \(\beta \in (0, d \wedge 2) \) then \(\exists \) CLT in TV, and:

1. If \(\beta \in (0, 1) \cup (1, d \wedge 2) \), then \(\text{Var}(S_{N,t}) \sim CN^{-\beta^\wedge(2-\beta)} \).
The effect of initial data

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0) = \delta_0, \ d \geq 1 \]
\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

Theorem (K-Nualart-Pu 2020+)

If \(d \geq 2 \) and \(f(dx) = \|x\|^{-\beta} dx \) for \(\beta \in (0, d \wedge 2) \) then \(\exists \) CLT in TV, and:

1. If \(\beta \in (0, 1) \cup (1, d \wedge 2) \), then \(\text{Var}(S_{N,t}) \sim CN^{-\beta \wedge (2-\beta)} \);
2. If \(\beta = 1 < d \wedge 2 \), then \(\text{Var}(S_{N,t}) \sim C'N^{-1} \log N \).
We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

\(F \approx E_F \) if \(\text{Var}(F) \approx 0 \)

We will soon see how we can approximate \(\text{Var}(F) \) using Malliavin calculus (Poincaré ineq.)

\(Nourdin-Peccati (2011) \) have proved that if \(F = \int v \, d\eta \in D^1,2 \) has variance one, then
\[
\text{dTV}(F, N(0,1)) \leq 2 \sqrt{\text{Var} \langle DF, v \rangle} H,
\]
where \(H \) denotes the Hilbert space associated to the cov of noise \(\eta \)

\(E\langle DF, v \rangle = \text{Var} F = 1 \) [Gaussian integration by parts]
We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

Ergodicity/Weak mixing

1. For ergodicity we need that $F \approx E_F$ if $\text{Var}(F) \approx 0$.
2. We will soon see how we can approximate $\text{Var}(F)$ using Malliavin calculus (Poincaré ineq.).

CLT in TV

(Malliavin–Stein method)

1. Nourdin-Peccati (2011) have proved that if $F = \int v \, d\eta \in D_1^1$, has variance one, then $d_{\text{TV}}(F, N(0, 1)) \leq 2 \sqrt{\text{Var} \langle DF, v \rangle}_{\mathcal{H}}$, where \mathcal{H} denotes the Hilbert space associated to the cov of noise.
2. $\langle DF, v \rangle_{\mathcal{H}} = \text{Var} F = 1$ [Gaussian integration by parts].

Common point: $\text{Var} \cdots \ll 1$.
We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

1. Ergodicity/Weak mixing

 (a) For ergodicity we need that $F \approx EF$ if $\text{Var}(F) \approx 0$

2. CLT in TV

 (Malliavin–Stein method)

 (a) Nourdin-Peccati (2011) have proved that if $F = \int v \, d\eta \in D_1^2$ has variance one, then

 $$d_{\text{TV}}(F, N(0,1)) \leq 2 \sqrt{\text{Var} \langle DF, v \rangle_{H}},$$

 where H denotes the Hilbert space associated to the cov of noise η

 (b) $\langle DF, v \rangle_{H} = \text{Var} F = 1$ [Gaussian integration by parts]
We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

Ergodicity/Weak mixing

(a) For ergodicity we need that $F \approx EF$ if $\text{Var}(F) \approx 0$
(b) We will soon see how we can approximate $\text{Var}(F)$ using Malliavin calculus (Poincaré ineq.)
We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

Ergodicity/Weak mixing

(a) For ergodicity we need that $F \approx EF$ if $\text{Var}(F) \approx 0$

(b) We will soon see how we can approximate $\text{Var}(F)$ using Malliavin calculus (Poincaré ineq.)

CLT in TV (Malliavin–Stein method)
We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

Ergodicity/Weak mixing

(a) For ergodicity we need that $F \approx EF$ if $\text{Var}(F) \approx 0$

(b) We will soon see how we can approximate $\text{Var}(F)$ using Malliavin calculus (Poincaré ineq.)

CLT in TV (Malliavin–Stein method)

(a) Nourdin-Peccati (2011) have proved that if $F = \int v \, d\eta \in \mathbb{D}^{1,2}$ has variance one, then

$$d_{TV}(F, N(0, 1)) \leq 2 \sqrt{\text{Var}\langle DF, v\rangle_{\mathcal{H}}},$$

where \mathcal{H} denotes the Hilbert space associated to the cov of noise η.
We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

Ergodicity/Weak mixing

(a) For ergodicity we need that $F \approx EF$ if $\text{Var}(F) \approx 0$

(b) We will soon see how we can approximate $\text{Var}(F)$ using Malliavin calculus (Poincaré ineq.)

CLT in TV (Malliavin–Stein method)

(a) Nourdin-Peccati (2011) have proved that if $F = \int v \, d\eta \in D^{1,2}$ has variance one, then

\[
 d_{TV}(F, N(0, 1)) \leq 2 \sqrt{\text{Var}\langle DF, v \rangle_{\mathcal{H}}},
\]

where \mathcal{H} denotes the Hilbert space associated to the cov of noise η

(b) $E\langle DF, v \rangle_{\mathcal{H}} = \text{Var}F = 1$ [Gaussian integration by parts]
Ergodicity & CLT in TV

1. We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

2. Ergodicity/Weak mixing
 (a) For ergodicity we need that $F \approx EF$ if $\text{Var}(F) \approx 0$
 (b) We will soon see how we can approximate $\text{Var}(F)$ using Malliavin calculus (Poincaré ineq.)

3. CLT in TV (Malliavin–Stein method)
 (a) Nourdin-Peccati (2011) have proved that if $F = \int v \, d\eta \in D^{1,2}$ has variance one, then

 $$d_{TV}(F, N(0,1)) \leq 2 \sqrt{\text{Var} \langle DF, v \rangle_{\mathcal{H}}},$$

 where \mathcal{H} denotes the Hilbert space associated to the cov of noise η
 (b) $E \langle DF, v \rangle_{\mathcal{H}} = \text{Var}F = 1$ [Gaussian integration by parts]

4. Common point: $\text{Var}(\cdots) \ll 1$
Malliavin Calculus & the Poincaré Inequality

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

Cov[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D)

- **A Clark-Ocone Formula** (Chen-K-Nualart-Pu, 19+): \(\forall F \in \mathbb{D}^{1,2}, \)

\[F = E[F] + \int_{(0, \infty) \times \mathbb{R}^d} E[D_{s,z}F | \mathcal{F}_s] \eta(ds \, dz) = E[F] + \int v \, d\eta \]
Malliavin Calculus & the Poincaré Inequality

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]
\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t-s)f(x-y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

- A Clark-Ocone Formula (Chen-K-Nualart-Pu, 19+): \(\forall F \in D^{1,2}, \)

\[F = E[F] + \int_{(0,\infty) \times \mathbb{R}^d} E[D_{s,z}F \mid \mathcal{F}_s] \eta(ds \, dz) = E[F] + \int v \, d\eta \]

\[: \text{If } \text{Var}(DF, v) \ll 1, \text{ then } F - E[F] \approx \text{normal, in TV} \]
Malliavin Calculus & the Poincaré Inequality

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \text{with} \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad \text{and} \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

- A Clark-Ocone Formula (Chen-K-Nualart-Pu, 19+): \(\forall F \in \mathbb{D}^{1,2} \),

\[F = EF + \int_{(0,\infty) \times \mathbb{R}^d} \mathbb{E} [D_s,F \mid \mathcal{F}_s] \eta(ds \, dz) = EF + \int v \, d\eta \]

\[\therefore \text{If } \text{Var}(DF, v)_{\mathcal{H}} \ll 1, \text{ then } F - EF \approx \text{normal, in TV} \]

- E.g., if \(f = \delta_0 \) and \(d = 1 \) (space-time white noise), then Poincaré ineq.

\[\text{Var}(F) = \int_0^\infty ds \int_{-\infty}^\infty dz \| \mathbb{E} [D_s,F \mid \mathcal{F}_s] \|^2 \]
Malliavin Calculus & the Poincaré Inequality

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad \mid \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad \mid \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \quad \cdots (D) \]

- A Clark-Ocone Formula (Chen-K-Nualart-Pu, 19+): \(\forall F \in \mathbb{D}^{1,2}, \)
 \[F = EF + \int_{(0,\infty) \times \mathbb{R}^d} \mathbb{E} [D_{s,z}F \mid \mathcal{F}_s] \eta(ds \, dz) = EF + \int v \, d\eta \]

- \(\therefore \) If \(\text{Var} \langle DF, v \rangle_{\mathcal{H}} \ll 1, \) then \(F - EF \approx \text{normal, in TV} \)
- E.g., if \(f = \delta_0 \) and \(d = 1 \) (space-time white noise), then \(\text{Poincaré ineq.} \)

\[\text{Var}(F) = \int_0^\infty ds \int_{-\infty}^\infty dz \| \mathbb{E} [D_{s,z}F \mid \mathcal{F}_s] \|^2 \]
A Clark-Ocone Formula (Chen-K-Nualart-Pu, 19+): \(\forall F \in \mathcal{D}^{1,2}, \)

\[
F = EF + \int_{(0,\infty) \times \mathbb{R}^d} E[D_{s,z}F \mid \mathcal{F}_s] \eta(ds \, dz) = EF + \int v \, d\eta
\]

\[
\therefore \text{If } \text{Var}(DF, v) \ll 1, \text{ then } F - EF \approx \text{normal, in TV}
\]

E.g., if \(f = \delta_0 \) and \(d = 1 \) (space-time white noise), then Poincaré ineq.

\[
\text{Var}(F) = \int_0^\infty ds \int_{-\infty}^\infty dz \left\| E[D_{s,z}F \mid \mathcal{F}_s] \right\|^2 \leq E \left(\|DF\|^2_{L^2(\mathbb{R}_+ \times \mathbb{R})} \right)
\]
Malliavin Calculus & the Poincaré Inequality

\[\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1 \]

\[\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx)/(1 + \|x\|^2) < \infty \cdots (D) \]

- A Clark-Ocone Formula (Chen-K-Nualart-Pu, 19+): \(\forall F \in D^{1,2} \),

\[F = EF + \int_{(0, \infty) \times \mathbb{R}^d} \mathbb{E} [D_{s, z} F \mid \mathcal{F}_s] \eta(ds, dz) = EF + \int v \, d\eta \]

\[\therefore \text{If } \text{Var} \langle DF, v \rangle_{\mathcal{H}} \ll 1 \text{, then } F - EF \approx \text{normal, in TV} \]

- E.g., if \(f = \delta_0 \) and \(d = 1 \) (space-time white noise), then Poincaré ineq.

\[\text{Var}(F) = \int_0^\infty ds \int_{-\infty}^\infty dz \, \| \mathbb{E} [D_{s, z} F \mid \mathcal{F}_s] \|_2^2 \leq \mathbb{E} \left(\|DF\|_{L^2(\mathbb{R}_+ \times \mathbb{R})}^2 \right) \]

- More generally: \(\forall F \in D^{1,2} \),

\[\text{Var}(F) \leq \mathbb{E} \left(\|DF\|_{H}^2 \right) . \]
Thank you!