

Le Chen, Fei Pu, and David Nualart Robert C. Dalang, Francesco Russo, and Marta Sanz-Solé

• $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$

- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0, x) \equiv 1$ for all $x \in \mathbb{R}^d$;

- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0, x) \equiv 1$ for all $x \in \mathbb{R}^d$;
- $\sigma : \mathbb{R} \to \mathbb{R}$ is non random and Lipschitz continuous;

- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0, x) \equiv 1$ for all $x \in \mathbb{R}^d$;
- $\sigma: \mathbb{R} \to \mathbb{R}$ is non random and Lipschitz continuous;
- η is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered <u>measure</u> f:

$$Cov[\eta(t,x),\eta(s,y)] = \delta_0(t-s)f(x-y) \quad \text{for } s,t \ge 0, \, x,y \in \mathbb{R}^d.$$

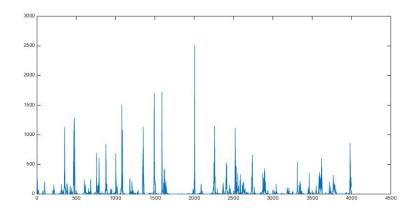
- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0, x) \equiv 1$ for all $x \in \mathbb{R}^d$;
- $\sigma: \mathbb{R} \to \mathbb{R}$ is non random and Lipschitz continuous;
- η is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered <u>measure</u> f:

$$Cov[\eta(t,x),\eta(s,y)] = \delta_0(t-s)f(x-y) \quad \text{for } s,t \geqslant 0, \, x,y \in \mathbb{R}^d.$$

• Here is a simulation for the parabolic Anderson model driven by space-time white noise $d=1,\,f=\delta_0,\,\sigma(u)=u$, and t=1 [thanks to Kunwoo Kim]:

$The \,\, \overline{Basic \,\, Problem}$

$$\partial_t u = \frac{1}{2}u'' + u\eta \quad | \quad d = 1 \quad | \quad f = \delta_0 \quad | \quad u(0) \equiv 1$$



$$\partial_t u = \frac{1}{2}u'' + u\eta \quad | \quad d = 1 \quad | \quad f = \delta_0 \quad | \quad u(0) \equiv 1$$

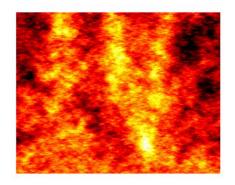
• Macroscopically multifractal for every t>0 when $\sigma \approx 1$ and $\sigma(u) \approx u$ [K-Kim-Xiao, AoP, 2017]

$$\partial_t u = \frac{1}{2}u'' + u\eta \quad | \quad d = 1 \quad | \quad f = \delta_0 \quad | \quad u(0) \equiv 1$$

- Macroscopically multifractal for every t>0 when $\sigma \approx 1$ and $\sigma(u) \approx u$ [K-Kim-Xiao, AoP, 2017]
- Macroscopically multifractal in space time when $\sigma \approx 1$ and $\sigma(u) \approx u$ [K-Kim-Xiao, CMP, 2018]

$$\partial_t u = \frac{1}{2}u'' + u\eta \quad | \quad d = 1 \quad | \quad f = \delta_0 \quad | \quad u(0) \equiv 1$$

- Macroscopically multifractal for every t > 0 when $\sigma \approx 1$ and $\sigma(u) \approx u$ [K-Kim-Xiao, AoP, 2017]
- Macroscopically multifractal in space time when $\sigma \approx 1$ and $\sigma(u) \approx u$ [K-Kim-Xiao, CMP, 2018]



$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

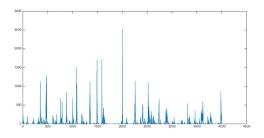
• Here, we want statements not about extremal peaks of the solution, but the general behavior of typical peaks.

$$\partial_t u = \frac{1}{2} \Delta u + \sigma(u) \eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

- Here, we want statements not about extremal peaks of the solution, but the general behavior of typical peaks.
- Basic result: Often, the peaks look like shot noise.

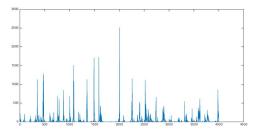
$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

- Here, we want statements not about extremal peaks of the solution, but the general behavior of typical peaks.
- Basic result: Often, the peaks look like shot noise.



$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

- Here, we want statements not about extremal peaks of the solution, but the general behavior of typical peaks.
- Basic result: Often, the peaks look like shot noise.



• The ergodic behavior of $x \mapsto u(t, x)$.

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

• $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0, x) \equiv 1$ for all $x \in \mathbb{R}^d$;

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0, x) \equiv 1$ for all $x \in \mathbb{R}^d$;
- $\sigma: \mathbb{R} \to \mathbb{R}$ is non random and Lipschitz continuous;

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0, x) \equiv 1$ for all $x \in \mathbb{R}^d$;
- $\sigma: \mathbb{R} \to \mathbb{R}$ is non random and Lipschitz continuous;
- η is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered <u>measure</u> f:

$$Cov[\eta(t,x),\eta(s,y)] = \delta_0(t-s)f(x-y) \qquad \text{for } s,t \geqslant 0, \, x,y \in \mathbb{R}^d.$$

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0,x) \equiv 1$ for all $x \in \mathbb{R}^d$;
- $\sigma: \mathbb{R} \to \mathbb{R}$ is non random and Lipschitz continuous;
- η is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered <u>measure</u> f:

$$Cov[\eta(t,x),\eta(s,y)] = \delta_0(t-s)f(x-y) \quad \text{for } s,t \geqslant 0, \, x,y \in \mathbb{R}^d.$$

• I.e., $\operatorname{Cov}[\int \phi \, d\eta, \int \psi \, d\eta] = \int_0^\infty (\phi(s), \psi(s) * f)_{L^2(\mathbb{R}^d)} ds$.

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

- $\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x)$ for t > 0 and $x \in \mathbb{R}^d$
- subject to (say) $u(0, x) \equiv 1$ for all $x \in \mathbb{R}^d$;
- $\sigma: \mathbb{R} \to \mathbb{R}$ is non random and Lipschitz continuous;
- η is a centered Gaussian noise, white in time, and homogeneous spatial correlation tempered <u>measure</u> f:

$$Cov[\eta(t,x),\eta(s,y)] = \delta_0(t-s)f(x-y) \quad \text{for } s,t \geqslant 0, \, x,y \in \mathbb{R}^d.$$

• I.e., $\operatorname{Cov}[\int \phi \, d\eta, \int \psi \, d\eta] = \int_0^\infty (\phi(s), \psi(s) * f)_{L^2(\mathbb{R}^d)} ds.$

Theorem (Dalang, 1999)

The solution to SPDE exists and is "unique" and is continuous in $L^k(P)$ for all $k \ge 1$ provided that

$$\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1 + \|z\|^2} < \infty. \tag{D}$$

This is NAS when $\sigma \propto 1$.

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

$$\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1 + \|z\|^2} < \infty. \tag{D}$$

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

$$\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1 + \|z\|^2} < \infty. \tag{D}$$

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

$$\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1 + \|z\|^2} < \infty. \tag{D}$$

- \bullet $f, \hat{f} \in L^1(\mathbb{R}^d)$ [Wiener algebra]

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

$$\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1 + \|z\|^2} < \infty. \tag{D}$$

- $f, \hat{f} \in L^1(\mathbb{R}^d)$ [Wiener algebra]
- \bullet $f \in L^2(\mathbb{R}^d)$ $[\Leftrightarrow \hat{f} \in L^2(\mathbb{R}^d)]$ and $d \leqslant 3$ [Cauchy–Schwarz ineq.]

$$\partial_t u = \frac{1}{2}\Delta u + \sigma(u)\eta \quad | \quad d \geqslant 1 \quad | \quad f \in \mathfrak{M} \quad | \quad u(0) \equiv 1$$

$$\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1 + \|z\|^2} < \infty. \tag{D}$$

- $f, \hat{f} \in L^1(\mathbb{R}^d)$ [Wiener algebra]
- **③** $f \in L^2(\mathbb{R}^d)$ [$\Leftrightarrow \hat{f} \in L^2(\mathbb{R}^d)$] and $d \leqslant 3$ [Cauchy–Schwarz ineq.]
- $f(x) \propto ||x||^{-\beta}$ where $\beta \in (0, d \land 2)$ [Riesz kernels]

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

1 It is not difficult to see that $x \mapsto u(t,x)$ is stationary for all t > 0

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) & | u(0, x) \equiv 1 \\
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) & | \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

- It is not difficult to see that $x \mapsto u(t,x)$ is stationary for all t > 0
- Is it ergodic?

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

- **①** It is not difficult to see that $x \mapsto u(t,x)$ is stationary for all t > 0
- Is it ergodic?

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

- **Q** It is not difficult to see that $x \mapsto u(t,x)$ is stationary for all t > 0
- Is it ergodic?

$Theorem\ (Chen ext{-}K ext{-}Nualart ext{-}Pu,\ 2019+)$

(a) u(t) is ergodic for all t > 0 if $\hat{f}\{0\} = 0$ [iff when $\sigma \propto 1$:Maruyama (1949); Dym-McKean (1976)]

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

- **1** It is not difficult to see that $x \mapsto u(t,x)$ is stationary for all t > 0
- Is it ergodic?

- (a) u(t) is ergodic for all t > 0 if $\hat{f}\{0\} = 0$ [iff when $\sigma \propto 1$:Maruyama (1949); Dym-McKean (1976)]
- (b) $\hat{f}\{0\} = 0$ iff \hat{f} has no atoms

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

- ① It is not difficult to see that $x \mapsto u(t,x)$ is stationary for all t>0
- Is it ergodic?

- (a) u(t) is ergodic for all t > 0 if $\hat{f}\{0\} = 0$ [iff when $\sigma \propto 1$:Maruyama (1949); Dym-McKean (1976)]
- (b) $\hat{f}\{0\} = 0$ iff \hat{f} has no atoms
- (c) $\hat{f}\{0\} = 0$ iff $f([-N, N]^d) = o(N^d)$ as $N \to \infty$

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

- ① It is not difficult to see that $x \mapsto u(t,x)$ is stationary for all t>0
- Is it ergodic?

- (a) u(t) is ergodic for all t > 0 if $\hat{f}\{0\} = 0$ [iff when $\sigma \propto 1$:Maruyama (1949); Dym-McKean (1976)]
- (b) $\hat{f}\{0\} = 0$ iff \hat{f} has no atoms
- (c) $\hat{f}\{0\} = 0$ iff $f([-N, N]^d) = o(N^d)$ as $N \to \infty$
 - If $f(dx) \ll dx$ then

$$\hat{f}\{0\} = 0$$
 iff $\frac{1}{|B(0,N)|} \int_{B(0,N)} f(x) dx \to 0$ as $N \to \infty$

Weak Mixing

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

② Let $\{X(a)\}_{a \in \mathbb{R}^d}$ be a stationary random field. It is weakly mixing [mixing in the sense of ergodic theory] if for all $a_1, \ldots, a_n, b_1, \ldots, b_m \in \mathbb{R}^d$ and $A_1, \ldots, A_m, B_1, \ldots, B_m \in \mathbb{R}$, $P\{X(a_i) < A_i \ , \ X(R+b_j) < B_j \ , \forall i \leqslant n, j \leqslant m\}$ $\rightarrow P\{X(a_i) < A_i \ , \forall i \leqslant n\} P\{X(b_j) \leqslant B_j \ , \forall j \leqslant m\} \text{ as } \|R\| \rightarrow \infty$

Weak Mixing

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + ||x||^2) < \infty \cdots (D)$$

② Let $\{X(a)\}_{a \in \mathbb{R}^d}$ be a stationary random field. It is weakly mixing [mixing in the sense of ergodic theory] if for all $a_1, \ldots, a_n, b_1, \ldots, b_m \in \mathbb{R}^d$ and $A_1, \ldots, A_m, B_1, \ldots, B_m \in \mathbb{R}$, $P\{X(a_i) < A_i, \ X(R + b_j) < B_j, \forall i \leq n, j \leq m\}$ $\rightarrow P\{X(a_i) < A_i, \ \forall i \leq n\} P\{X(b_j) \leq B_j, \forall j \leq m\} \text{ as } ||R|| \rightarrow \infty$

$Theorem\ (Chen ext{-}K ext{-}Nualart ext{-}Pu,\ 2019+)$

u(t) is mixing for all t > 0 if for some, hence all, $\lambda > 0$,

$$\lim_{\|x\| \to \infty} \int_{\mathbb{R}^d} \frac{\mathrm{e}^{ix \cdot z} \hat{f}(\mathrm{d}z)}{\lambda + \|z\|^2} = 0.$$

Weak Mixing

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots \text{(D)}$$

② Let $\{X(a)\}_{a \in \mathbb{R}^d}$ be a stationary random field. It is weakly mixing [mixing in the sense of ergodic theory] if for all $a_1, \ldots, a_n, b_1, \ldots, b_m \in \mathbb{R}^d$ and $A_1, \ldots, A_m, B_1, \ldots, B_m \in \mathbb{R}$, P $\{X(a_i) < A_i, X(R+b_j) < B_j, \forall i \leqslant n, j \leqslant m\}$ → P $\{X(a_i) < A_i, \forall i \leqslant n\}$ P $\{X(b_j) \leqslant B_j, \forall j \leqslant m\}$ as $\|R\| \to \infty$

$Theorem\ (Chen ext{-}K ext{-}Nualart ext{-}Pu,\ 2019+)$

u(t) is mixing for all t > 0 if for some, hence all, $\lambda > 0$,

$$\lim_{\|x\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{ix \cdot z} \hat{f}(dz)}{\lambda + \|z\|^2} = 0.$$

Example

u(t) is mixing for all t > 0 if $\hat{f}(dx) \ll dx$ [(D) + Riemann-Lebesgue]

$$\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x) & | u(0,x) \equiv 1 \\
\operatorname{Cov}[\eta(t,x), \eta(s,y)] = \delta_0(t-s) f(x-y) & | \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + ||x||^2) < \infty \cdots (D)$$

① (D): $\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1+||z||^2} < \infty$ implies spatial ergodicity

$$\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x) & | u(0,x) \equiv 1 \\
\operatorname{Cov}[\eta(t,x), \eta(s,y)] = \delta_0(t-s) f(x-y) & | \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + ||x||^2) < \infty \cdots (D)$$

- ① (D): $\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1+||z||^2} < \infty$ implies spatial ergodicity
- ② (D) + $\lim_{\|z\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{iz \cdot x} \hat{f}(dz)}{1 + \|z\|^2} = 0$ implies mixing

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \quad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \quad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

- ① (D): $\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1+||z||^2} < \infty$ implies spatial ergodicity
- ② (D) $+\lim_{\|z\|\to\infty}\int_{\mathbb{R}^d}\frac{\mathrm{e}^{iz\cdot x}\hat{f}(\mathrm{d}z)}{1+\|z\|^2}=0$ implies mixing

Theorem (Chen-K-Nualart-Pu 2020+)

If
$$0 < f(\mathbb{R}^d) < \infty + (D)$$
, then for all $g \in \text{Lip with } g(0) = 0$ and $\text{Lip}(g) = 1$,

$$N^{d/2}\left(\frac{1}{N^d}\int_{[0,N]^d}g(u(t,x))\,\mathrm{d}x - \mathrm{E}[g(u(t,0))]\right) \Rightarrow \mathrm{N}(0,\tau_g^2) \qquad as \ N\to\infty.$$

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) & | u(0, x) \equiv 1 \\
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) & | \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots \text{(D)}$$

- ① (D): $\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1+||z||^2} < \infty$ implies spatial ergodicity
- ② (D) + $\lim_{\|z\| \to \infty} \int_{\mathbb{R}^d} \frac{e^{iz \cdot x} \hat{f}(dz)}{1 + \|z\|^2} = 0$ implies mixing

Theorem (Chen-K-Nualart-Pu 2020+)

If
$$0 < f(\mathbb{R}^d) < \infty + (D)$$
, then for all $g \in \text{Lip with } g(0) = 0$ and $\text{Lip}(g) = 1$,

$$N^{d/2}\left(\frac{1}{N^d}\int_{[0,N]^d}g(u(t\,,x))\,\mathrm{d}x - \mathrm{E}[g(u(t\,,0))]\right) \Rightarrow \mathrm{N}(0\,,\tau_g^2) \qquad as \ N\to\infty.$$

3 All are NAS when σ ∝ 1; \exists FCLTs; and the CLT holds in total variation!

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) & | u(0, x) \equiv 1 \\
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) & | \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots \text{(D)}$$

- ① (D): $\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1+||z||^2} < \infty$ implies spatial ergodicity
- ② (D) $+\lim_{\|z\|\to\infty}\int_{\mathbb{R}^d}\frac{\mathrm{e}^{iz\cdot x}\hat{f}(\mathrm{d}z)}{1+\|z\|^2}=0$ implies mixing

Theorem (Chen-K-Nualart-Pu 2020+)

If
$$0 < f(\mathbb{R}^d) < \infty + (D)$$
, then for all $g \in \text{Lip with } g(0) = 0$ and $\text{Lip}(g) = 1$,

$$N^{d/2}\left(\frac{1}{N^d}\int_{[0,N]^d}g(u(t\,,x))\,\mathrm{d}x - \mathrm{E}[g(u(t\,,0))]\right) \Rightarrow \mathrm{N}(0\,,\tau_g^2) \qquad as \ N\to\infty.$$

- ② All are NAS when $\sigma \propto 1$; \exists FCLTs; and the CLT holds in total variation!
- $\mbox{\@ delta}$ The assumption $f(\mathbb{R}^d)<\infty$ can be dropped sometimes, but the $N^{d/2}$ -rate of CLT can then change

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

- ① (D): $\int_{\mathbb{R}^d} \frac{\hat{f}(\mathrm{d}z)}{1+||z||^2} < \infty$ implies spatial ergodicity
- ② (D) $+\lim_{\|z\|\to\infty}\int_{\mathbb{R}^d}\frac{\mathrm{e}^{iz\cdot x}\hat{f}(\mathrm{d}z)}{1+\|z\|^2}=0$ implies mixing

Theorem (Chen-K-Nualart-Pu 2020+)

If
$$0 < f(\mathbb{R}^d) < \infty + (D)$$
, then for all $g \in \text{Lip with } g(0) = 0$ and $\text{Lip}(g) = 1$,

$$N^{d/2}\left(\frac{1}{N^d}\int_{[0,N]^d}g(u(t\,,x))\,\mathrm{d}x - \mathrm{E}[g(u(t\,,0))]\right) \Rightarrow \mathrm{N}(0\,,\tau_g^2) \qquad as\ N\to\infty.$$

- ② All are NAS when $\sigma \propto 1$; \exists FCLTs; and the CLT holds in total variation!
- The assumption $f(\mathbb{R}^d)$ < ∞ can be dropped sometimes, but the $N^{d/2}$ -rate of CLT can then change
- $g \in \text{Lip can be extended in various directions}$

◆ロト ◆問ト ◆注ト ◆注ト 注 りへで

$$\begin{array}{lll} \partial_t u(t\,,x) = \frac{1}{2} \partial_x^2 u(t\,,x) + u(t\,,x) \eta(t\,,x) & | & u(0) = \delta_0, \ d = 1 \\ \operatorname{Cov}[\eta(t\,,x)\,,\eta(s\,,y)] = \delta_0(t-s) \delta_0(x-y) & | & \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x)/(1+\|x\|^2) < \infty \cdots (\mathrm{D}) \end{array}$$

② Suppose instead that $u(0) = \delta_0$, and let us specialize to $f = \delta_0$ and d = 1 [we understand d > 1 as well, to a very good extent]

$$\begin{array}{lll} \partial_t u(t\,,x) = \frac{1}{2} \partial_x^2 u(t\,,x) + u(t\,,x) \eta(t\,,x) & | & u(0) = \delta_0, \ d = 1 \\ \operatorname{Cov}[\eta(t\,,x)\,,\eta(s\,,y)] = \delta_0(t-s) \delta_0(x-y) & | & \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x)/(1+\|x\|^2) < \infty \cdots (\mathrm{D}) \end{array}$$

② Suppose instead that $u(0) = \delta_0$, and let us specialize to $f = \delta_0$ and d = 1 [we understand d > 1 as well, to a very good extent]

Proposition (Amir-Corwin-Quastel 2011)

$$x \mapsto U(t,x) = \frac{u(t,x)}{p_t(x)}$$
 is stationary for all $t > 0$, where $p_t(x) = \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}}$.

$$\begin{array}{lll} \partial_t u(t\,,x) = \frac{1}{2} \partial_x^2 u(t\,,x) + u(t\,,x) \eta(t\,,x) & | & u(0) = \delta_0, \ d = 1 \\ \operatorname{Cov}[\eta(t\,,x)\,,\eta(s\,,y)] = \delta_0(t-s) \delta_0(x-y) & | & \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x)/(1+\|x\|^2) < \infty \cdots (\mathrm{D}) \end{array}$$

Suppose instead that $u(0) = \delta_0$, and let us specialize to $f = \delta_0$ and d = 1 [we understand d > 1 as well, to a very good extent]

Proposition (Amir-Corwin-Quastel 2011)

$$x \mapsto U(t,x) = \frac{u(t,x)}{p_t(x)}$$
 is stationary for all $t > 0$, where $p_t(x) = \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}}$.

Theorem (Chen-K-Nualart-Pu 2020+)

U(t) is weakly mixing $\forall t > 0$, and $S_{N,t} := N^{-1} \int_0^N [U(t,x) - 1] dx$ satisfies

$$\sqrt{\frac{N}{\log N}} S_{N,t} \xrightarrow{TV} N(0,2t) \quad as N \to \infty.$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - り 9 0 0

$$\begin{aligned} \partial_t u(t\,,x) &= \tfrac{1}{2} \Delta u(t\,,x) + \sigma(u(t\,,x)) \; \eta(t\,,x) & | \quad u(0) &= \delta_0, \; d \geqslant 1 \\ \operatorname{Cov}[\eta(t\,,x)\,,\eta(s\,,y)] &= \delta_0(t-s) f(x-y) & | \quad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x)/(1+\|x\|^2) < \infty \cdots (\mathrm{D}) \end{aligned}$$

$Theorem \ (K ext{-}Nualart ext{-}Pu \ 2020+)$

$$\begin{aligned} \partial_t u(t\,,x) &= \frac{1}{2} \Delta u(t\,,x) + \sigma(u(t\,,x)) \, \eta(t\,,x) & | \quad u(0) &= \delta_0, \quad d \geqslant 1 \\ \operatorname{Cov}[\eta(t\,,x)\,,\eta(s\,,y)] &= \delta_0(t-s) f(x-y) & | \quad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x)/(1+\|x\|^2) < \infty \cdots (\mathrm{D}) \end{aligned}$$

$Theorem \ (K-Nualart-Pu \ 2020+)$

 \exists CLT in TV. And:

• If d=1 and $f(\mathbb{R}) < \infty$, then $Var(S_{N,t}) \approx N^{-1} \log N$. Moreover:

$$\begin{aligned} \partial_t u(t,x) &= \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \, \eta(t,x) & | \quad u(0) &= \delta_0, \quad d \geqslant 1 \\ \operatorname{Cov}[\eta(t,x),\eta(s,y)] &= \delta_0(t-s) f(x-y) & | \quad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x)/(1+\|x\|^2) < \infty \cdots (\mathrm{D}) \end{aligned}$$

Theorem (K-Nualart-Pu 2020+)

- If d=1 and $f(\mathbb{R})<\infty$, then $\operatorname{Var}(S_{N,t}) \asymp N^{-1}\log N$. Moreover:
 - (a) If $f = c\delta_0$ for some c > 0 then $Var(S_{N,t}) \sim 2t f(\mathbb{R}) N^{-1} \log N$

$$\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \, \eta(t,x) \qquad | \quad u(0) = \delta_0, \ d \geqslant 1
\operatorname{Cov}[\eta(t,x), \eta(s,y)] = \delta_0(t-s) f(x-y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + ||x||^2) < \infty \cdots (D)$$

$Theorem \ (K ext{-}Nualart ext{-}Pu \ 2020+)$

- If d=1 and $f(\mathbb{R})<\infty$, then $\operatorname{Var}(S_{N,t}) \asymp N^{-1}\log N$. Moreover:
 - (a) If $f = c\delta_0$ for some c > 0 then $Var(S_{N,t}) \sim 2t f(\mathbb{R}) N^{-1} \log N$
 - (b) If f is a Rajchman measure, then $Var(S_{N,t}) \sim tf(\mathbb{R})N^{-1}\log N$.

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \, \eta(t, x) \qquad | \qquad u(0) = \delta_0, \quad d \geqslant 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \qquad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + ||x||^2) < \infty \cdots (D)$$

$Theorem~(K ext{-}Nualart ext{-}Pu~2020+)$

- If d=1 and $f(\mathbb{R})<\infty$, then $\operatorname{Var}(S_{N,t}) \asymp N^{-1}\log N$. Moreover:
 - (a) If $f = c\delta_0$ for some c > 0 then $Var(S_{N,t}) \sim 2t f(\mathbb{R}) N^{-1} \log N$
 - (b) If f is a Rajchman measure, then $Var(S_{N,t}) \sim tf(\mathbb{R})N^{-1}\log N$.
- ② If $d \ge 2$, then $\mathcal{R}(f) := \lim_{N \to \infty} N \operatorname{Var}(S_{N,t})$ exists and is in $(0, \infty]$.

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \, \eta(t, x) \qquad | \qquad u(0) = \delta_0, \quad d \geqslant 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \qquad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + ||x||^2) < \infty \cdots (D)$$

Theorem (K-Nualart-Pu 2020+)

- If d=1 and $f(\mathbb{R}) < \infty$, then $Var(S_{N,t}) \approx N^{-1} \log N$. Moreover:
 - (a) If $f = c\delta_0$ for some c > 0 then $Var(S_{N,t}) \sim 2tf(\mathbb{R})N^{-1}\log N$
 - (b) If f is a Rajchman measure, then $Var(S_{N,t}) \sim tf(\mathbb{R})N^{-1}\log N$.
- ② If $d \geqslant 2$, then $\mathcal{R}(f) := \lim_{N \to \infty} N \operatorname{Var}(S_{N,t})$ exists and is in $(0, \infty]$.

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \, \eta(t, x) \qquad | \quad u(0) = \delta_0, \quad d \geqslant 1
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + ||x||^2) < \infty \cdots (D)$$

Theorem (K-Nualart-Pu 2020+)

- ① If d = 1 and $f(\mathbb{R}) < \infty$, then $Var(S_{N,t}) \approx N^{-1} \log N$. Moreover:
 - (a) If $f = c\delta_0$ for some c > 0 then $Var(S_{N,t}) \sim 2t f(\mathbb{R}) N^{-1} \log N$
 - (b) If f is a Rajchman measure, then $Var(S_{N,t}) \sim tf(\mathbb{R})N^{-1}\log N$.
- ② If $d \geqslant 2$, then $\mathcal{R}(f) := \lim_{N \to \infty} N \operatorname{Var}(S_{N,t})$ exists and is in $(0, \infty]$.
- If $d \geqslant 2$, then $\mathcal{R}(f) < \infty \leftrightarrow \int_{\mathbb{R}^d} \frac{f(\mathrm{d}x)}{\|x\|^{d-1}} < \infty \leftrightarrow \int_{\mathbb{R}^d} \frac{f(\mathrm{d}x)}{\|x\|} < \infty$;
- **3** If $d \ge 2$ and $f(dx) = ||x||^{-\beta} dx$ for $\beta \in (0, d \land 2)$, then: ∃ 3 different phases:

$$\begin{aligned} \partial_t u(t,x) &= \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \, \eta(t,x) & | \quad u(0) &= \delta_0, \quad d \geqslant 1 \\ \operatorname{Cov}[\eta(t,x),\eta(s,y)] &= \delta_0(t-s) f(x-y) & | \quad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + \|x\|^2) < \infty \cdots (\mathrm{D}) \end{aligned}$$

$Theorem~(K ext{-}Nualart ext{-}Pu~2020+)$

If $d \ge 2$ and $f(dx) = ||x||^{-\beta} dx$ for $\beta \in (0, d \land 2)$ then $\exists CLT$ in TV, and:

$$\begin{aligned} \partial_t u(t,x) &= \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \, \eta(t,x) & | \quad u(0) &= \delta_0, \quad d \geqslant 1 \\ \operatorname{Cov}[\eta(t,x),\eta(s,y)] &= \delta_0(t-s) f(x-y) & | \quad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x)/(1+\|x\|^2) < \infty \cdots (\mathrm{D}) \end{aligned}$$

$Theorem \ (K ext{-}Nualart ext{-}Pu \ 2020+)$

If $d \ge 2$ and $f(dx) = ||x||^{-\beta} dx$ for $\beta \in (0, d \land 2)$ then $\exists CLT \text{ in } TV, \text{ and:}$

• If $\beta \in (0,1) \cup (1,d \wedge 2)$, then $\operatorname{Var}(S_{N,t}) \sim CN^{-\beta \wedge (2-\beta)}$;

$$\partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + \sigma(u(t,x)) \eta(t,x) \qquad | \qquad u(0) = \delta_0, \quad d \geqslant 1$$

$$\operatorname{Cov}[\eta(t,x), \eta(s,y)] = \delta_0(t-s) f(x-y) \qquad | \qquad \int_{\mathbb{R}^d} \hat{f}(\mathrm{d}x) / (1 + \|x\|^2) < \infty \cdots (D)$$

$Theorem \ (K ext{-}Nualart ext{-}Pu \ 2020+)$

If $d \ge 2$ and $f(dx) = ||x||^{-\beta} dx$ for $\beta \in (0, d \land 2)$ then $\exists CLT \text{ in } TV, \text{ and:}$

- If $\beta \in (0,1) \cup (1,d \wedge 2)$, then $\operatorname{Var}(S_{N,t}) \sim CN^{-\beta \wedge (2-\beta)}$;
- 2 If $\beta = 1 < d \wedge 2$, then $Var(S_{N,t}) \sim C'N^{-1} \log N$.

• We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:

- We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:
- Ergodicity/Weak mixing

- We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:
- Ergodicity/Weak mixing
 - (a) For ergodicity we need that $F \approx EF$ if $Var(F) \approx 0$

- We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:
- Ergodicity/Weak mixing
 - (a) For ergodicity we need that $F \approx EF$ if $Var(F) \approx 0$
 - (b) We will soon see how we can approximate Var(F) using Malliavin calculus (Poincaré ineq.)

- We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:
- Ergodicity/Weak mixing
 - (a) For ergodicity we need that $F \approx EF$ if $Var(F) \approx 0$
 - (b) We will soon see how we can approximate Var(F) using Malliavin calculus (Poincaré ineq.)
- **3** <u>CLT in TV</u> (Malliavin–Stein method)

- We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:
- Ergodicity/Weak mixing
 - (a) For ergodicity we need that $F \approx EF$ if $Var(F) \approx 0$
 - (b) We will soon see how we can approximate Var(F) using Malliavin calculus (Poincaré ineq.)
- 3 CLT in TV (Malliavin–Stein method)
 - (a) Nourdin-Peccati (2011) have proved that if $F = \int v \, d\eta \in \mathbb{D}^{1,2}$ has variance one, then

$$d_{TV}(F, N(0, 1)) \leq 2\sqrt{Var\langle DF, v\rangle_{\mathcal{H}}},$$

where \mathcal{H} denotes the Hilbert space associated to the cov of noise η

- We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:
- Ergodicity/Weak mixing
 - (a) For ergodicity we need that $F \approx EF$ if $Var(F) \approx 0$
 - (b) We will soon see how we can approximate Var(F) using Malliavin calculus (Poincaré ineq.)
- 3 CLT in TV (Malliavin–Stein method)
 - (a) Nourdin-Peccati (2011) have proved that if $F = \int v \, d\eta \in \mathbb{D}^{1,2}$ has variance one, then

$$d_{TV}(F, N(0, 1)) \leq 2\sqrt{Var\langle DF, v\rangle_{\mathcal{H}}},$$

where \mathcal{H} denotes the Hilbert space associated to the cov of noise η

(b) $E\langle DF, v \rangle_{\mathcal{H}} = Var F = 1$ [Gaussian integration by parts]

- We know of various such results, unfortunately all different at the technical level. But there are high-level proofs that one implements differently in different settings:
- Ergodicity/Weak mixing
 - (a) For ergodicity we need that $F \approx EF$ if $Var(F) \approx 0$
 - (\boldsymbol{b}) We will soon see how we can approximate $\mathrm{Var}(F)$ using Malliavin calculus (Poincaré ineq.)
- 3 CLT in TV (Malliavin–Stein method)
 - (a) Nourdin-Peccati (2011) have proved that if $F = \int v \, d\eta \in \mathbb{D}^{1,2}$ has variance one, then

$$d_{TV}(F, N(0, 1)) \leq 2\sqrt{Var\langle DF, v\rangle_{\mathcal{H}}},$$

where \mathcal{H} denotes the Hilbert space associated to the cov of noise η

- (b) $E\langle DF, v \rangle_{\mathcal{H}} = Var F = 1$ [Gaussian integration by parts]
- **3** Common point: $Var(\cdots) \ll 1$

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots \text{(D)}$$

$$F = EF + \int_{(0,\infty)\times\mathbb{R}^d} E[D_{s,z}F \mid \mathcal{F}_s] \eta(\mathrm{d}s\,\mathrm{d}z) = EF + \int v\,\mathrm{d}\eta$$

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) & | u(0, x) \equiv 1 \\
\operatorname{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) & | \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

• A Clark-Ocone Formula (Chen-K-Nualart-Pu, 19+): $\forall F \in \mathbb{D}^{1,2}$,

$$F = \mathbf{E}F + \int_{(0,\infty)\times\mathbb{R}^d} \mathbf{E} \left[D_{s,z}F \mid \mathcal{F}_s\right] \eta(\mathrm{d}s\,\mathrm{d}z) = \mathbf{E}F + \int v\,\mathrm{d}\eta$$

• :. If $Var\langle DF, v\rangle_{\mathcal{H}} \ll 1$, then $F - EF \approx \text{normal}$, in TV

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

$$F = \mathbf{E}F + \int_{(0,\infty)\times\mathbb{R}^d} \mathbf{E} \left[D_{s,z}F \mid \mathcal{F}_s\right] \eta(\mathrm{d}s\,\mathrm{d}z) = \mathbf{E}F + \int v\,\mathrm{d}\eta$$

- :. If $Var\langle DF, v\rangle_{\mathcal{H}} \ll 1$, then $F EF \approx \text{normal}$, in TV
- E.g., if $f = \delta_0$ and d = 1 (space-time white noise), then Poincaré ineq.

$$\operatorname{Var}(F) = \int_0^\infty \mathrm{d}s \int_{-\infty}^\infty \mathrm{d}z \left\| \operatorname{E} \left[D_{s,z} F \mid \mathcal{F}_s \right] \right\|_2^2$$

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

$$F = EF + \int_{(0,\infty)\times\mathbb{R}^d} E[D_{s,z}F \mid \mathcal{F}_s] \eta(\mathrm{d}s\,\mathrm{d}z) = EF + \int v\,\mathrm{d}\eta$$

- :. If $Var\langle DF, v \rangle_{\mathcal{H}} \ll 1$, then $F EF \approx \text{normal}$, in TV
- E.g., if $f = \delta_0$ and d = 1 (space-time white noise), then Poincaré ineq.

$$\operatorname{Var}(F) = \int_{0}^{\infty} ds \int_{-\infty}^{\infty} dz \left\| \operatorname{E} \left[D_{s,z} F \mid \mathcal{F}_{s} \right] \right\|_{2}^{2}$$

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

$$F = EF + \int_{(0,\infty)\times\mathbb{R}^d} E[D_{s,z}F \mid \mathcal{F}_s] \eta(\mathrm{d}s\,\mathrm{d}z) = EF + \int v\,\mathrm{d}\eta$$

- :. If $Var\langle DF, v \rangle_{\mathcal{H}} \ll 1$, then $F EF \approx \text{normal}$, in TV
- E.g., if $f = \delta_0$ and d = 1 (space-time white noise), then Poincaré ineq.

$$\operatorname{Var}(F) = \int_0^\infty \mathrm{d}s \int_{-\infty}^\infty \mathrm{d}z \left\| \operatorname{E} \left[D_{s,z} F \mid \mathcal{F}_s \right] \right\|_2^2 \leqslant \operatorname{E} \left(\left\| D F \right\|_{L^2(\mathbb{R}_+ \times \mathbb{R})}^2 \right)$$

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \sigma(u(t, x)) \eta(t, x) \qquad | \quad u(0, x) \equiv 1
\text{Cov}[\eta(t, x), \eta(s, y)] = \delta_0(t - s) f(x - y) \qquad | \quad \int_{\mathbb{R}^d} \hat{f}(dx) / (1 + ||x||^2) < \infty \cdots (D)$$

• A Clark-Ocone Formula (Chen-K-Nualart-Pu, 19+): $\forall F \in \mathbb{D}^{1,2}$,

$$F = EF + \int_{(0,\infty)\times\mathbb{R}^d} E[D_{s,z}F \mid \mathcal{F}_s] \eta(\mathrm{d}s\,\mathrm{d}z) = EF + \int v\,\mathrm{d}\eta$$

- :. If $Var\langle DF, v \rangle_{\mathcal{H}} \ll 1$, then $F EF \approx \text{normal}$, in TV
- E.g., if $f = \delta_0$ and d = 1 (space-time white noise), then Poincaré ineq.

$$\operatorname{Var}(F) = \int_0^\infty \mathrm{d}s \int_{-\infty}^\infty \mathrm{d}z \left\| \operatorname{E} \left[D_{s,z} F \mid \mathcal{F}_s \right] \right\|_2^2 \leqslant \operatorname{E} \left(\left\| D F \right\|_{L^2(\mathbb{R}_+ \times \mathbb{R})}^2 \right)$$

• More generally: $\forall F \in \mathbb{D}^{1,2}$,

$$\operatorname{Var}(F) \leqslant \operatorname{E}\left(\|DF\|_{\mathcal{H}}^{2}\right).$$

