Mathematical Models of Epidemics The Covid 19

Etienne Pardoux (AMU)

joint work with G. Pang (U. Penn.) and R. Forien (INRAE)

Ascona Round Table

The classical SIR model

- It is one of the most popular models of epidemics. A population of fixed size N is distributed into 3 compartments: S = "susceptible",
 I = "infectious", R = "recovered" (and immune .. or dead).
- The deterministic ODE model for proportions reads

$$\begin{split} &\frac{d\bar{S}}{dt}(t) = -\lambda \bar{S}(t)\bar{I}(t), \\ &\frac{d\bar{I}}{dt}(t) = \lambda \bar{S}(t)\bar{I}(t) - \gamma \bar{I}(t), \\ &\frac{d\bar{R}}{dt}(t) = \gamma \bar{I}(t). \end{split}$$

 $\lambda = \text{contact rate}, \gamma = \text{rate of curing}$

The classical SIR model

- It is one of the most popular models of epidemics. A population of fixed size N is distributed into 3 compartments: S = "susceptible",
 I = "infectious", R = "recovered" (and immune .. or dead).
- The deterministic ODE model for proportions reads

$$egin{aligned} rac{dar{S}}{dt}(t) &= -\lambda ar{S}(t)ar{I}(t), \ rac{dar{I}}{dt}(t) &= \lambda ar{S}(t)ar{I}(t) - \gamma ar{I}(t), \ rac{dar{R}}{dt}(t) &= \gamma ar{I}(t). \end{aligned}$$

 $\lambda = \text{contact rate}, \ \gamma = \text{rate of curing}.$

$$\frac{dI}{dt}(t) = \lambda \bar{S}(t)I(t) - \gamma I(t).$$

- The idea : each infectious meets others at rate λ , which results in a new infection if the encountered individual is susceptible.
- The second term means that the duration of the infectious period is a r.v. with the $\text{Exp}(\gamma)$ distribution.
- This assumption is quite unrealistic. Suppose that distribution has an arbitrary d.f. F(t). Then, with $F^c(t) = 1 F(t)$,

$$\begin{split} \bar{S}(t) &= \bar{S}(0) - \lambda \int_0^t \bar{S}(s)\bar{I}(s)ds, \\ \bar{I}(t) &= \bar{I}(0)F_0^c(t) + \lambda \int_0^t F^c(t-s)\bar{S}(s)\bar{I}(s)ds, \\ \bar{R}(t) &= \bar{I}(0)F_0(t) + \lambda \int_0^t F(t-s)\bar{S}(s)\bar{I}(s)ds. \end{split}$$

$$\frac{dI}{dt}(t) = \lambda \bar{S}(t)I(t) - \gamma I(t).$$

- The idea : each infectious meets others at rate λ, which results in a new infection if the encountered individual is susceptible.
- The second term means that the duration of the infectious period is a r.v. with the $\text{Exp}(\gamma)$ distribution.
- This assumption is quite unrealistic. Suppose that distribution has an arbitrary d.f. F(t). Then, with $F^c(t) = 1 F(t)$,

$$\bar{S}(t) = \bar{S}(0) - \lambda \int_0^t \bar{S}(s)\bar{I}(s)ds,$$

$$\bar{I}(t) = \bar{I}(0)F_0^c(t) + \lambda \int_0^t F^c(t-s)\bar{S}(s)\bar{I}(s)ds,$$

$$\bar{R}(t) = \bar{I}(0)F_0(t) + \lambda \int_0^t F(t-s)\bar{S}(s)\bar{I}(s)ds$$

$$\frac{dI}{dt}(t) = \lambda \bar{S}(t)I(t) - \gamma I(t).$$

- The idea : each infectious meets others at rate λ, which results in a new infection if the encountered individual is susceptible.
- The second term means that the duration of the infectious period is a r.v. with the $\text{Exp}(\gamma)$ distribution.
- This assumption is quite unrealistic. Suppose that distribution has an arbitrary d.f. F(t). Then, with $F^c(t) = 1 F(t)$,

$$\bar{S}(t) = \bar{S}(0) - \lambda \int_0^t \bar{S}(s)\bar{I}(s)ds,$$

$$\bar{I}(t) = \bar{I}(0)F_0^c(t) + \lambda \int_0^t F^c(t-s)\bar{S}(s)\bar{I}(s)ds,$$

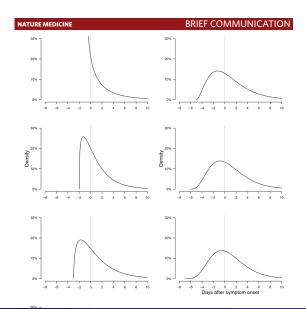
$$\bar{R}(t) = \bar{I}(0)F_0(t) + \lambda \int_0^t F(t-s)\bar{S}(s)\bar{I}(s)ds$$

$$\frac{dI}{dt}(t) = \lambda \bar{S}(t)I(t) - \gamma I(t).$$

- The idea: each infectious meets others at rate λ, which results in a new infection if the encountered individual is susceptible.
 The second term means that the duration of the infectious period is a
- The second term means that the duration of the infectious period is a r.v. with the $\text{Exp}(\gamma)$ distribution.
- This assumption is quite unrealistic. Suppose that distribution has an arbitrary d.f. F(t). Then, with $F^c(t) = 1 F(t)$,

$$ar{S}(t) = ar{S}(0) - \lambda \int_0^t ar{S}(s) ar{I}(s) ds,$$
 $ar{I}(t) = ar{I}(0) F_0^c(t) + \lambda \int_0^t F^c(t-s) ar{S}(s) ar{I}(s) ds.$ $ar{R}(t) = ar{I}(0) F_0(t) + \lambda \int_0^t F(t-s) ar{S}(s) ar{I}(s) ds.$

He, Lau, Wu et al., Nature Medicine 2020



Varying infectivity

• Let $\{\lambda(t),\ t\geq 0\}$ a random function with ≥ 0 values. If $\mathcal{E}=\inf\{t>0,\lambda(t)>0\}$ $\mathcal{I}=\inf\{t>0,\lambda(\mathcal{E}+t+r)=0,\forall r>0\}$. Then \mathcal{E} is the exposed period, \mathcal{I} the infectious period. We assume that to each individual is attached a copy $\lambda_i(t)$, where the λ_i are i.i.d. To the initially infected individuals are attached copies

• We allow λ to have a finite given number of jumps, and assume uniform continuity between jumps. Then one can establish a law of large numbers as $N \to \infty$ of the corresponding individual based model. Define the total force of infection

$$\mathfrak{I}^{N}(t) = \sum_{j=1}^{I^{N}(0)} \lambda_{j}^{0}(t) + \sum_{i=1}^{A^{N}(t)} \lambda_{i}(t - \tau_{i}^{N}),$$

 $\lambda_i^0(t)$ of another type of infectivity function.

 $A^N(t) = \sum_{i \geq 1} \mathbf{1}_{(0,t]}(au_i^N)$ counts the number of indiv. infected on (0,t]

Varying infectivity

- Let $\{\lambda(t),\ t\geq 0\}$ a random function with ≥ 0 values. If
 - $\mathcal{E} = \inf\{t > 0, \lambda(t) > 0\} \quad \mathcal{I} = \inf\{t > 0, \lambda(\mathcal{E} + t + r) = 0, \forall r > 0\}.$

Then ${\mathcal E}$ is the exposed period, ${\mathcal I}$ the infectious period.

We assume that to each individual is attached a copy $\lambda_i(t)$, where the λ_i are i.i.d. To the initially infected individuals are attached copies $\lambda_i^0(t)$ of another type of infectivity function.

• We allow λ to have a finite given number of jumps, and assume uniform continuity between jumps. Then one can establish a law of large numbers as $N \to \infty$ of the corresponding individual based model. Define the total force of infection

$$\mathfrak{I}^N(t) = \sum_{j=1}^{I^N(0)} \lambda_j^0(t) + \sum_{i=1}^{A^N(t)} \lambda_i(t-\tau_i^N),$$

 $A^N(t) = \sum_{i \geq 1} \mathbf{1}_{(0,t]}(au_i^N)$ counts the number of indiv. infected on (0,t].

Varying infectivity: the LLN

- Let $S^N(t)$, $I^N(t)$, $R^N(t)$ denote resp. the number of susceptible, infected and recovered indiv. in the population. $S^N(t) + I^N(t) + R^N(t) = N$. For each process $X^N(t)$, we let $\bar{X}^N(t) := N^{-1} X^N(t)$.
- $(\bar{S}^N(t), \bar{\Im}^N(t), \bar{I}^N(t), \bar{R}^N(t)) \rightarrow (\bar{S}(t), \bar{\Im}(t), \bar{I}(t), \bar{R}(t))$ as $N \rightarrow \infty$ where, with $\bar{\lambda}(t) = \mathbb{E}[\lambda(t)], \; \bar{\lambda}^0(t) = \mathbb{E}[\lambda^0(t)], \; F = \text{d.f. of } \mathcal{E} + \mathcal{I},$

$$\begin{split} \bar{S}(t) &= \bar{S}(0) - \int_0^t \bar{S}(s)\bar{\Im}(s)ds, \\ \bar{\Im}(t) &= \bar{I}(0)\bar{\lambda}^0(t) + \int_0^t \bar{\lambda}(t-s)\bar{S}(s)\bar{\Im}(s)ds, \\ \bar{I}(t) &= \bar{I}(0)F_0^c(t) + \int_0^t F^c(t-s)\bar{S}(s)\bar{\Im}(s)ds, \\ \bar{R}(t) &= \bar{I}(0)F_0(t) + \int_0^t F(t-s)\bar{S}(s)\bar{\Im}(s)ds. \end{split}$$

Varying infectivity: the LLN

- Let $S^N(t)$, $I^N(t)$, $R^N(t)$ denote resp. the number of susceptible, infected and recovered indiv. in the population. $S^N(t) + I^N(t) + R^N(t) = N$. For each process $X^N(t)$, we let $\bar{X}^N(t) := N^{-1} X^N(t)$.
- $(\bar{S}^N(t), \bar{\mathfrak{I}}^N(t), \bar{I}^N(t), \bar{R}^N(t)) \rightarrow (\bar{S}(t), \bar{\mathfrak{I}}(t), \bar{I}(t), \bar{R}(t))$ as $N \rightarrow \infty$, where, with $\bar{\lambda}(t) = \mathbb{E}[\lambda(t)], \bar{\lambda}^0(t) = \mathbb{E}[\lambda^0(t)], F = \text{d.f. of } \mathcal{E} + \mathcal{I}$,

$$\begin{split} \bar{S}(t) &= \bar{S}(0) - \int_0^t \bar{S}(s)\bar{\Im}(s)ds, \\ \bar{\Im}(t) &= \bar{I}(0)\bar{\lambda}^0(t) + \int_0^t \bar{\lambda}(t-s)\bar{S}(s)\bar{\Im}(s)ds, \\ \bar{I}(t) &= \bar{I}(0)F_0^c(t) + \int_0^t F^c(t-s)\bar{S}(s)\bar{\Im}(s)ds, \\ \bar{R}(t) &= \bar{I}(0)F_0(t) + \int_0^t F(t-s)\bar{S}(s)\bar{\Im}(s)ds. \end{split}$$

The early phase of the epidemic

- We now replace $\lambda(t)$ by $\mu\lambda(t)$, where $\lambda(t)$ is the varying infectivity of any given individual, and μ measures the intensity of his/her social contacts. We can assume that $\lambda(t)$ is given to us by the medical science, while μ is essentially unknown, random and independent of λ , and is very much affected by measures like lockdown.
- Assume that we consider a phase during which $S(t) \simeq 1$ (we could in fact consider any phase during which $\bar{S}(t) \simeq c$ for any c). We now let $(\Im(t), I(t), R(t)) \simeq (N\bar{\Im}(t), N\bar{I}(t), N\bar{R}(t))$ solution of

$$\Im(t) = \bar{\mu} \int_{-\infty}^{t} \bar{\lambda}(t-s)\Im(s)ds.$$

$$I(t) = \int_{-\infty}^{t} F^{c}(t-s)\Im(s)ds.$$

$$R(t) = \int_{-\infty}^{t} F(t-s)\Im(s)ds.$$

The early phase of the epidemic

- We now replace $\lambda(t)$ by $\mu\lambda(t)$, where $\lambda(t)$ is the varying infectivity of any given individual, and μ measures the intensity of his/her social contacts. We can assume that $\lambda(t)$ is given to us by the medical science, while μ is essentially unknown, random and independent of λ , and is very much affected by measures like lockdown.
- Assume that we consider a phase during which $\bar{S}(t) \simeq 1$ (we could in fact consider any phase during which $\bar{S}(t) \simeq c$ for any c). We now let $(\Im(t), I(t), R(t)) \simeq (N\bar{\Im}(t), N\bar{I}(t), N\bar{R}(t))$ solution of

$$\mathfrak{I}(t) = \bar{\mu} \int_{-\infty}^{t} \bar{\lambda}(t-s) \mathfrak{I}(s) ds,$$
 $I(t) = \int_{-\infty}^{t} F^{c}(t-s) \mathfrak{I}(s) ds,$
 $R(t) = \int_{-\infty}^{t} F(t-s) \mathfrak{I}(s) ds.$

The early phase of the epidemic. 2

- We look for a solution $\mathfrak{I}(t) = \iota e^{\rho t}$, $I(t) = \mathbf{i} e^{\rho t}$, $R(t) = \mathbf{r} e^{\rho t}$.
- ullet Note that ho is estimated from the data. We get

$$\bar{\mu} = \left(\int_0^\infty \bar{\lambda}(t) e^{-\rho t} dt\right)^{-1}, \ \iota = \rho, \ \mathbf{i} = \mathbb{E}[1 - e^{-\rho(\mathcal{E} + \mathcal{I})}], \ \mathbf{r} = \mathbb{E}[e^{-\rho(\mathcal{E} + \mathcal{I})}]$$

We also have

$$R_0 = rac{\int_0^\infty ar{\lambda}(t)dt}{\int_0^\infty ar{\lambda}(t)e^{-
ho t}dt}\,.$$

In the particular case where $\lambda(t) = \lambda \mathbf{1}_{[\mathcal{E}, \mathcal{E} + \mathcal{I})}(t)$,

$$R_0 = \lambda \mathbb{E}[\mathcal{I}] = \frac{\rho \mathbb{E}[\mathcal{I}]}{\mathbb{E}[e^{-\rho \mathcal{E}}(1 - e^{-\rho \mathcal{I}})]}$$

Neglecting \mathcal{E} leads to underestimate of R_0 (in phases where $\rho > 0$).

The early phase of the epidemic. 2

- We look for a solution $\mathfrak{I}(t) = \iota e^{\rho t}$, $I(t) = \mathbf{i} e^{\rho t}$, $R(t) = \mathbf{r} e^{\rho t}$.
- \bullet Note that ρ is estimated from the data. We get

$$ar{\mu} = \left(\int_0^\infty ar{\lambda}(t) e^{-
ho t} dt
ight)^{-1}, \ \iota =
ho, oldsymbol{i} = \mathbb{E}[1 - e^{-
ho(\mathcal{E} + \mathcal{I})}], \ oldsymbol{r} = \mathbb{E}[e^{-
ho(\mathcal{E} + \mathcal{I})}].$$

We also have

$$R_0 = \frac{\int_0^\infty \bar{\lambda}(t)dt}{\int_0^\infty \bar{\lambda}(t)e^{-\rho t}dt}.$$

In the particular case where $\lambda(t) = \lambda \mathbf{1}_{[\mathcal{E}, \mathcal{E} + \mathcal{I})}(t)$,

$$R_0 = \lambda \mathbb{E}[\mathcal{I}] = \frac{\rho \mathbb{E}[\mathcal{I}]}{\mathbb{E}[e^{-\rho \mathcal{E}}(1 - e^{-\rho \mathcal{I}})]}$$

Neglecting \mathcal{E} leads to underestimate of R_0 (in phases where $\rho > 0$).

The early phase of the epidemic. 2

- We look for a solution $\Im(t) = \iota e^{\rho t}$, $I(t) = i e^{\rho t}$, $R(t) = r e^{\rho t}$.
- ullet Note that ho is estimated from the data. We get

$$ar{\mu} = \left(\int_0^\infty ar{\lambda}(t) e^{-
ho t} dt
ight)^{-1}, \ \iota =
ho, oldsymbol{i} = \mathbb{E}[1 - e^{-
ho(\mathcal{E} + \mathcal{I})}], \ oldsymbol{r} = \mathbb{E}[e^{-
ho(\mathcal{E} + \mathcal{I})}].$$

We also have

$$R_0 = \frac{\int_0^\infty \bar{\lambda}(t)dt}{\int_0^\infty \bar{\lambda}(t)e^{-\rho t}dt}.$$

In the particular case where $\lambda(t) = \lambda \mathbf{1}_{[\mathcal{E},\mathcal{E}+\mathcal{I})}(t)$,

$$R_0 = \lambda \mathbb{E}[\mathcal{I}] = \frac{\rho \mathbb{E}[\mathcal{I}]}{\mathbb{E}[e^{-\rho \mathcal{E}}(1 - e^{-\rho \mathcal{I}})]}.$$

Neglecting \mathcal{E} leads to underestimate of R_0 (in phases where $\rho > 0$).

How R_0 depends upon the model

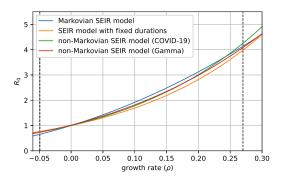


FIGURE – Value of R_0 as a function of the growth rate ρ for different distributions of the exposed and infectious periods $(\mathcal{E},\mathcal{I})$. Four types of distributions are displayed : exponential (corresponding to the Markovian SEIR model), fixed, bimodal distribution mimicking Covid-19 (see below) and Gamma distribution. All distributions have a mean exposed time of 3 days and a mean infectious time of 4.8 days, corresponding to a proportion of reported individuals of 0.8.

The Covid epidemic

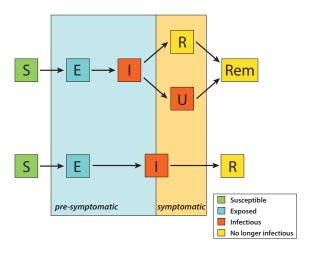


FIGURE – Flow chart of the SEIRU model of Liu, Magal et al. and the equivalent SEIR non-Markovian model. In the latter, I and U are merged into one compartment, also R and Rem are merged into one compartment.

The Covid epidemic. 2

We let

$$\mathcal{E}=2+2X_1$$

and

$$I = Y(3 + X_2) + (1 - Y)(8 + 4X_3),$$

where X_1, X_2, X_3, Y are independent, X_1, X_2 and X_3 having a beta distribution on [0,1], Y is a Bernoulli r.v., with $0.2 \le \mathbb{P}(Y=1) \le 0.8$.

• If we choose $\mathbb{P}(Y=1)=0.8$ (resp. 0.2), our estimate of R_0 is 4.2 (resp. 6) prior to lockdown in France, while are estimates for R_0 during lockdown is 0.73 (resp. 0.67).

The Covid epidemic. 2

We let

$$\mathcal{E}=2+2X_1$$

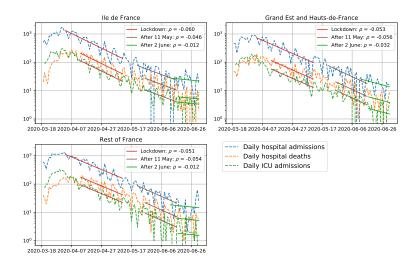
and

$$\mathcal{I} = Y(3 + X_2) + (1 - Y)(8 + 4X_3),$$

where X_1, X_2, X_3, Y are independent, X_1, X_2 and X_3 having a beta distribution on [0,1], Y is a Bernoulli r.v., with $0.2 \le \mathbb{P}(Y=1) \le 0.8$.

• If we choose $\mathbb{P}(Y=1)=0.8$ (resp. 0.2), our estimate of R_0 is 4.2 (resp. 6) prior to lockdown in France, while are estimates for R_0 during lockdown is 0.73 (resp. 0.67).

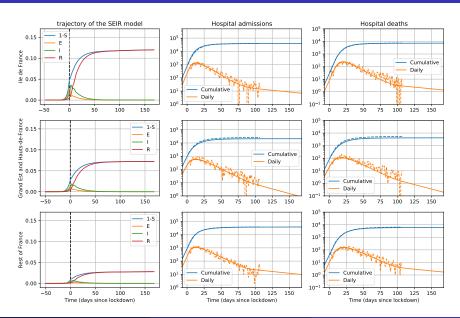
The Covid epidemic in France during and after lockdown



Prediction if $\rho = 0.02$ after June 2



More optimistic prediction



References

- G. Pang and E. Pardoux, Functional limit theorems for non-Markovian epidemic models, submitted + arxiv
- R. Forien, G. Pang and E. Pardoux, Epidemic models with varying infectiosity, submitted + arxiv
- R. Forien, G. Pang and E. Pardoux, Estimating the state of the Covid-19 epidemic in France using a non-Markovian model, submitted + medRxiv
- F. Brauer, C. Castillo-Chavez and Z. Feng, *Mathematical Models in Epidemiology*, Springer 2019.
- X. He, E.H.Y. Lau, P. Wu et al., Temporal dynamics in viral shedding and transmissibility of covid-19, *Nature medicine* **26**, 672–675, 2020.
- Z. Liu, P. Magal, O. Seydi and G. Webb, A Covid–19 epidemic model with latency period, *Infectious disease modelling* **5**, 323–337, 2020.

THANK YOU FOR YOUR ATTENTION!