Seminar of Probability and Stochastic Process

Thursday, 16th December, from 11h15 to 12h15 MAA 112, EPFL, Ecublens

Prof. Daniel Conus

University of Utah

On the chaotic character of the stochastic heat equation, before the onset of intermittency

Abstract:

We consider a nonlinear stochastic heat heat equation $\partial_t u = \frac{1}{2} \partial_{xx} u + \sigma(u) \partial_{xt} W$, where $\partial_{xt} W$ denotes space-time white noise and $\sigma : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous. We establish that, at every fixed time t > 0, the global behavior of the solution depends in a critical manner on the structure of the initial function u_0 . Under suitable technical conditions on u_0 and σ , $\sup_{|x| \le R} u_t(x)$ remains bounded in R when u_0 has compact support,

whereas with probability one, $\sup_{|x|\leq R} \!\! u_t(x) \geq \mathrm{const} \cdot \left(\log R
ight)^{1/6}$ as $R o \infty$

when u_0 is bounded uniformly away from zero. The mentioned sensitivity to the initial data of the stochastic heat equation is a way to state that the solution to the stochastic heat equation is chaotic at fixed times, well before the onset of intermittency.

This is a joint work with Davar Khoshnevisan and Mathew Joseph, University of Utah.

Date of last change: Tue, 07 Dec 2010 14:35:22, by Le CHEN