# Seminar of Probability and Stochastic Process 

Tuesday, 1th April, from 16h15<br>MA A1 12, EPFL, Ecublens

## Prof. Raluca Balan

University of Ottawa

## Stochastic integration with respect to Levy colored noise, with applications to SPDEs


#### Abstract

: The purpose of this talk is to introduce a new type of noise for problems in stochastic analysis, which behaves in time like a finite-variance Levy process without a Gaussian component. In the space variable, the noise is a stationary random distribution (in the sense introduced in Ito, 1954), whose covariance is a non-negative definite distribution $\rho$, which can be viewed as the Fourier transform of a tempered measure $\mu$. In the Gaussian case, a similar type of noise was introduced in Dalang (1999), under the assumption that the distribution $\rho$ is induced by a tempered non-negative function $f$ (or a tempered measure $\Gamma$ ). We develop a theory of stochastic integration with respect to this noise without this assumption. The same theory can be developed in the Gaussian case, the motivating example (in spatial dimension $d=1$ ) being a noise which behaves like a fractional Brownian motion in space, with Hurst index $H<1 / 2$.

As an application of this theory, we consider the linear stochastic wave (or heat) equation with this noise. The random field solution of


this equation exists if and only if the measure $\mu$ satisfies the condition:
$\int_{R^{d}} \frac{1}{1+|\xi|^{2}} \mu(d \xi)<\infty$,
introduced in Dalang (1999).
In the example mentioned above, $\mu$ has density function $c_{H}|\xi|^{1-2 H}$, and the previous condition holds for any $H \in(0,1)$.

If $H>1 / 2, \rho$ is the distribution induced by the Riesz
kernel $f(x)=|x|^{2 H-2}$, but if $H<1 / 2, \rho$ is a genuine distribution which coincides with the second distributional derivative of the function $V(x)=|x|^{2 H}$ (as shown in Jolis, 2010).

Studying non-linear SPDEs with this kind of noise remains an open problem, even in the Gaussian case.

Date of last change: Thu, 20 Mar 2014 08:20:14, by Carlo Ciccarella


