

Making power electronics fly

SWISS IEEE PELS Chapter

Alexander Tschesno Nikos Chrysogelos

27 October 2022

Situational awareness for first responders

Immediately

Single button push to launch

Uninterruptible flight

Active tethered drone

As long as required

Shore power

As little resources as possible

Fully autonomous system

Situational awareness for first responders

Uninterruptible flight

Active tethered drone

As long as required

Shore power

Shore power

Sigma (AC)

Rooftop Box (DC)

Active tether

Angle and tension control

- Force sensor-based active spool and thrust control

Data

- >2x 1080p video streams and control data

Power

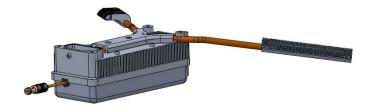
- 360V - 380V DC @ 1 A

Power electronics requirements

Kite power

- Input voltage 380V
- Output voltage 24V
- Power ~ 500W
- PLC filters

- η ~ 93.5%



Kite power

- Input voltage 380V
- Output voltage 24V
- Power ~ 500W
- PLC filters

- η ~ 93.5%
- 143gr (12% of kite)
- 10 kW/l

Ground station power

AC 90V - 230V

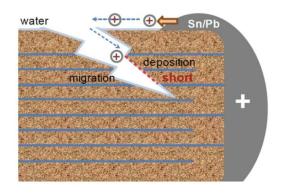
DC 10V - 32V

- P ~ 900W
- 2 Outputs (HV & LV)

Ground station power

AC 90V - 230V

- η ~ 96%
- 900gr (10% of GS) 1 kg (10% of GS)
- 1 kW/l

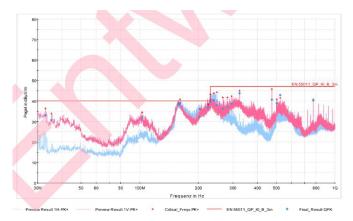

DC 10V - 32V

- η ~ 89%
- 0.9 kW/l

MLCC failures

Mitigations

- Boardflex and automotive type
- Distance to rigid parts (mounting points and connectors)
- Additional circuit adjustments



EMC debugging

- System debugging
 - Isolate relevant noise sources
- In-house debugging
 - EMC toolkit (current and near field probes)
- Variation of Y caps resonant frequencies
 - Manufacturer / value dependent

Learnings

- Radiated emissions for every subsystem before integration
- Y caps have various resonant frequencies
- Test setups: Improvise. Adapt. Overcome
 - o FMC.
 - o Thermals
- Climatic chamber is a must.
- Vibrations destroy MLCCs
- Power Electronics for manufacturing

