

Hybrid Switched Capacitor Circuits and Magnetics for Miniaturized Power Delivery

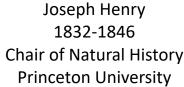
Minjie Chen, Assistant Professor

Department of Electrical and Computer Engineering

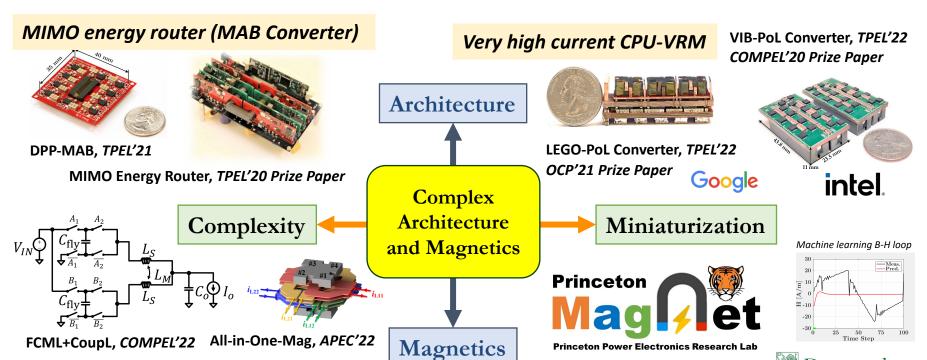
Andlinger Center for Energy and the Environment

Princeton University

Princeton Power Electronics Research Lab


Princeton Power Electronics Research Lab

Semiconductor Research Corporation

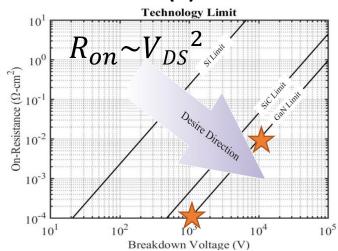


Overview of Princeton Power Electronics Research

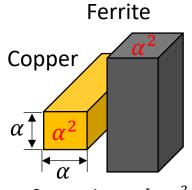
FCML converter and coupled magnetics

Machine learning for modeling power magnetics

MagNet Database, APEC'22


Dartmouth

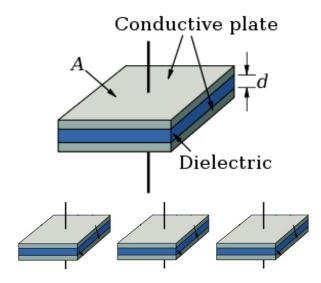
Scaling Laws of Power Components


Switches (R)

"Baliga Figure-of-Merit"

Smaller switches better

Magnetics (L)



Copper Area ~ I ~ α^2

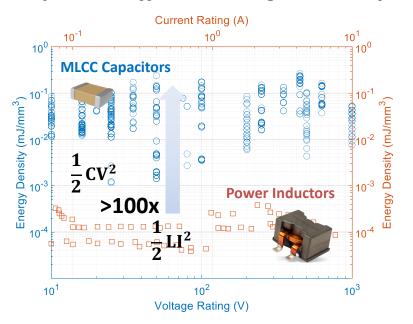
Ferrite Area ~ V ~ α^2

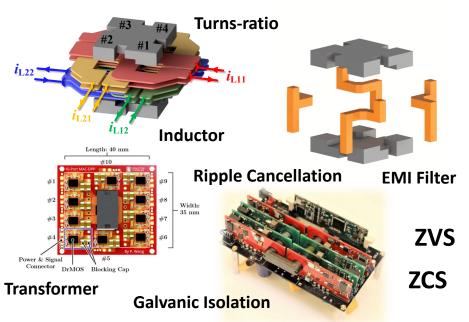
Power / Volume ~ $\alpha^{4/3}$

• Capacitors (C)

Larger magnetics better

Capacitors - indifferent

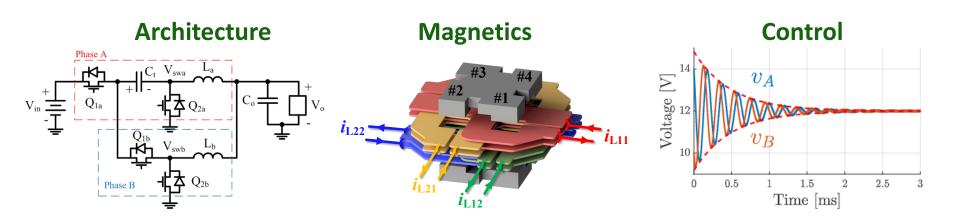

- B. J. Baliga, Fundamentals of Power Semiconductor Devices, ISBN-13: 978-0387473130.
- S. Ćuk, "A New Zero-Ripple Switching DC-to-DC Converter and Integrated Magnetics," IEEE Transactions on Magnetics, March 1983.
- C. R. Sullivan et al., "On size and magnetics: Why small efficient power inductors are rare," 3D-PEIM'16.


Capacitors for Density & Magnetics for Functionality

Capacitors offer >100x higher density

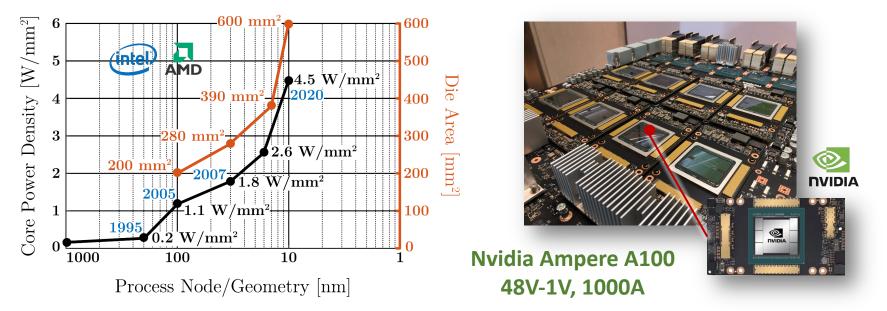
Magnetics create innovation opportunities

CM/DM Choke


- Sullivan et al., "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," 3D-PEIM'16.
- Kyaw et al., "Fundamental Examination of Multiple Potential Passive Component Technologies ...," TPEL'18.

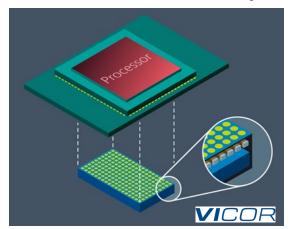
Contents

- 1. Architecture Hybrid SC Circuits and Magnetics for CPU-VRMs
- 2. Magnetics Open-Source Database and Design Methods
- 3. Control Synergy between FCML and Coupled Magnetics

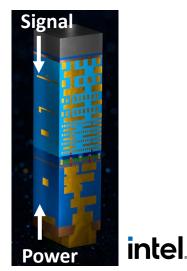


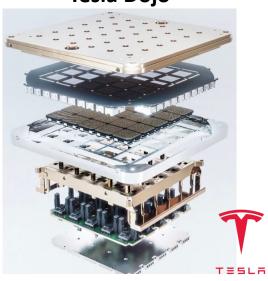
Massive Power Demand in Future Computing

- Transistor power density rapidly growing
- Processor die area continuously expanding
- More microprocessors on server motherboards


 J. Beak, M. Chen et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22.

Vertical Power Delivery to Microprocessors


Vertical Power Delivery


Benefits

- Reduced interconnect length
- Reduced loss
- Better signal integrity

Intel PowerVia

Tesla Dojo

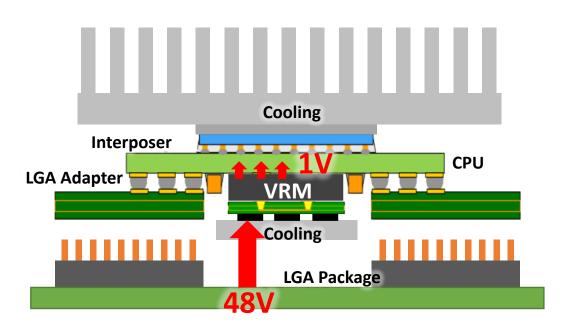
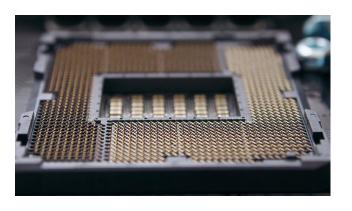
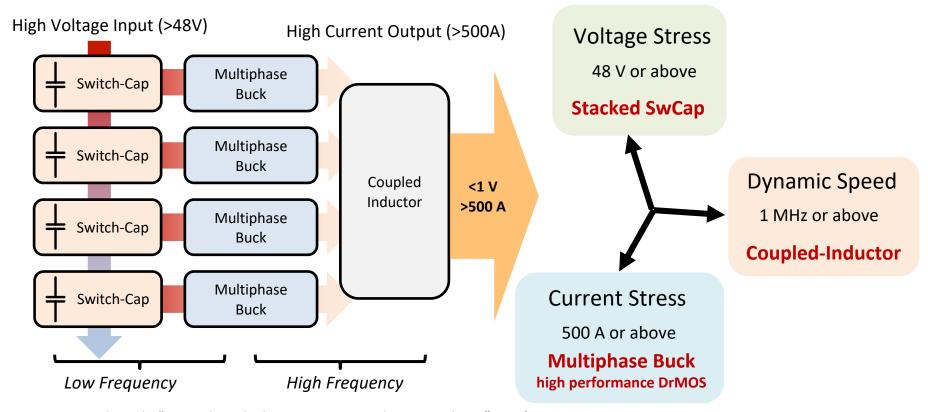

Better power electronics enable better computing

Image Courtesy: Vicor, Intel & Tesla



Princeton Vertical-Power-in-Package for CPU Power Delivery UNIVERSITY

- VRM Area smaller than CPU Area
- Minimize the VRM Height

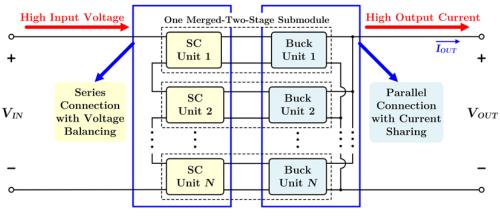

Next Generation Targets

- 48V 1V, or 48V 0.5V
- (> 1 kA)Output current
- Current density $(> 1 A/mm^2)$
- Very low profile (< 8 mm)
- Power density $(> 1 \text{ kW/in}^3)$
- Efficiency (> 95%)

Princeton Series-Input Parallel-Output Architecture

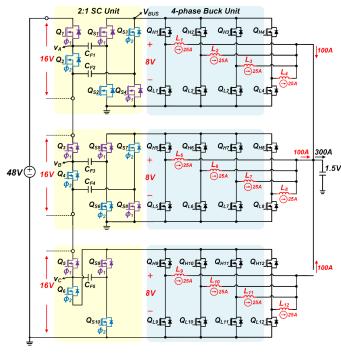
• J. Beak et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22.

Merged-Two-Stage Hybrid Switched-Capacitor Architecture


- Merge two types of building blocks and create mutual advantages
 - 1st stage: switched capacitor voltage source @ low frequency (split voltage)
 - 2nd stage: switched inductor current source @ high frequency (split current)

- M. Chen, Merged Multi-Stage Power Conversion: A Hybrid Switched-Capacitor Magnetics Approach, Ph.D. Thesis, MIT, June, 2015.
- D. M. Giuliano, M. E. D'Asaro, J. Zwart, and D. J. Perreault, "Miniaturized low-voltage power converters with fast dynamic response," IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 395–405, Sep. 2014.
- R. C. N. Pilawa-Podgurski, D. M. Giuliano, and D. J. Perreault, "Merged-two-stage power converter architecture with soft charging switched capacitor energy transfer," in Proc. IEEE Power Electron. Specialists Conf., Rhodes, Greece, 2008, pp. 4008–4015.

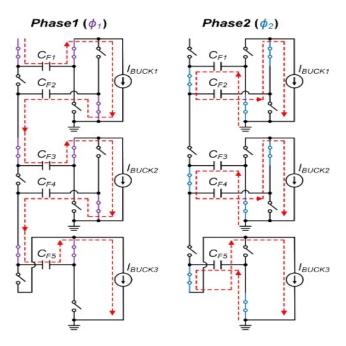
LEGO-Pol: Granular Building Blocks for Pol

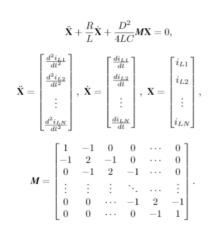


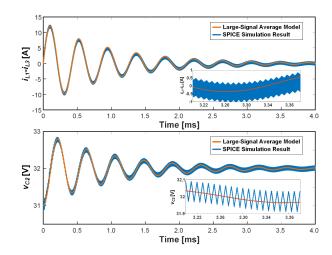
Submodules → Linear Extendable & Group Operated (LEGO)

- Automatic voltage balancing
- Automatic current sharing
- Distributed thermal stress
- Capable of doing current mode control
- Fully modular and highly extendable
- J. Beak et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22.

2:1 SC Units 8:1 Buck Units

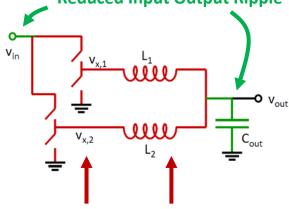


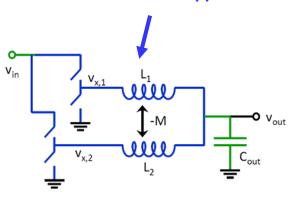

Merged Two Stage Operation with Mutual Benefits

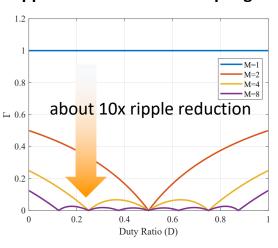


Soft-Charging Operation of SC Circuit

Dynamics of Current Balancing


- Inductors soft-charge the switched capacitors
- Automatic current balancing of switched-capacitor circuits
- Low frequency step down & high frequency regulation
- J. Beak et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22.


Unified Models for Multiphase Coupled Inductors



Reduced Phase Ripple

Ripple Reduction from Coupling

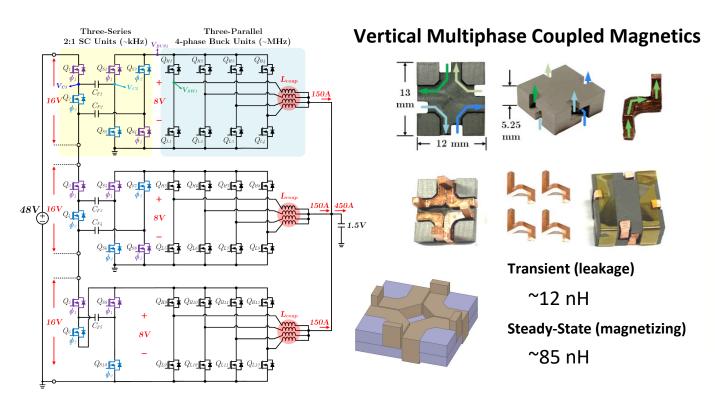
Uncoupled, Same Phase Ripple

Interleaving Ripple Reduction Ratio

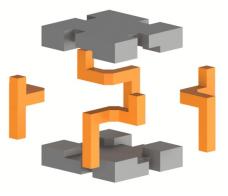
$$\Gamma = \frac{(k+1-DM)(DM-k)}{(1-D)DM^2}$$

Magnetic Coupling

$$\beta = \frac{MR_C}{R_I}$$

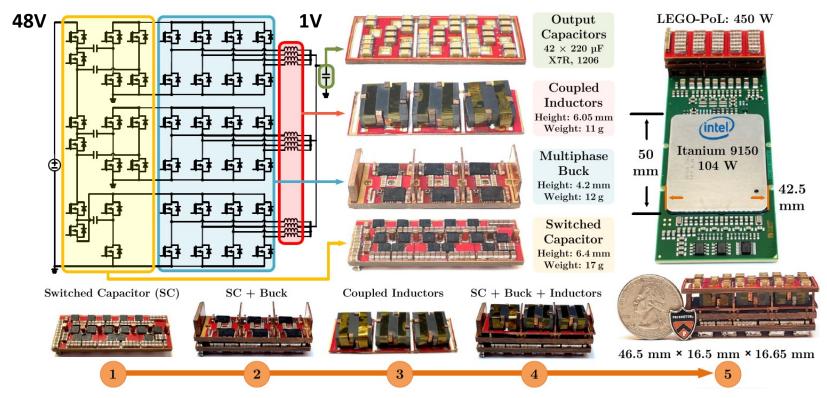

Coupling Ripple Reduction Ratio

$$\gamma = \frac{1 + \beta \Gamma}{1 + \beta}$$


- Stronger coupling → better ripple reduction and faster dynamics
- M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," TPEL'21.

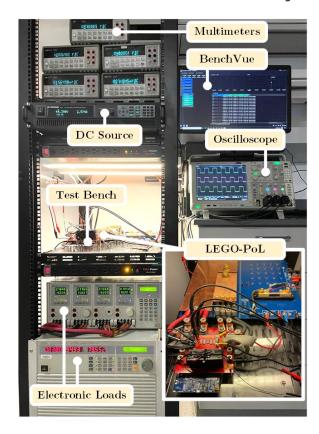
Multiphase Coupled Inductor for Voltage Regulation

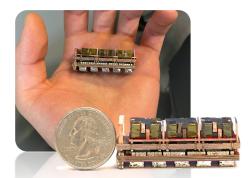
Assembly Process

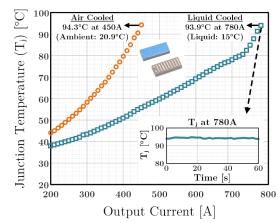

12mm x 12mm x 5mm

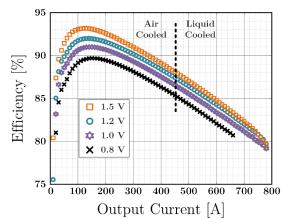
• J. Beak et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22.

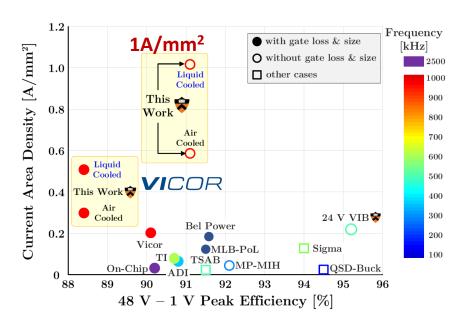
3D Stacked Packaging for Vertical Power Delivery

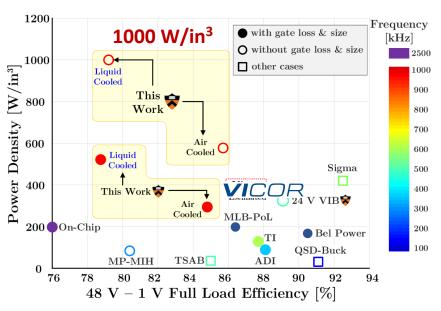



• J. Beak et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22.


Performance Summary



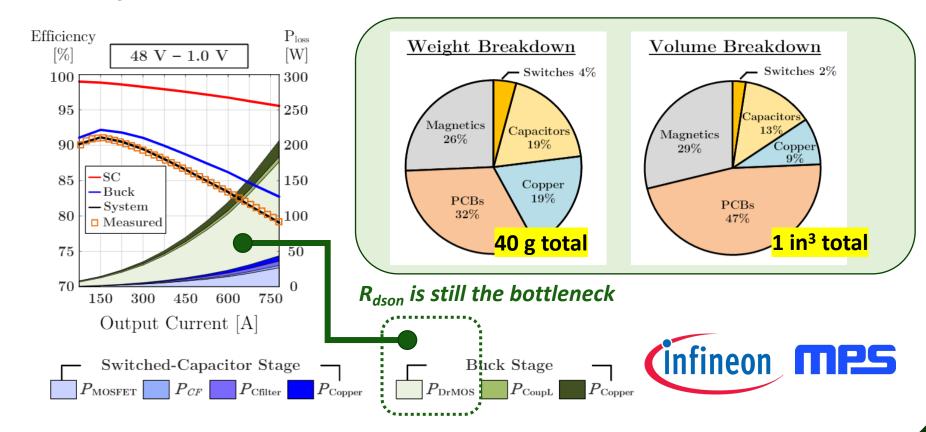

780 A, 1 V, 1 A/mm², 1,000 W/in³



Performance Comparison

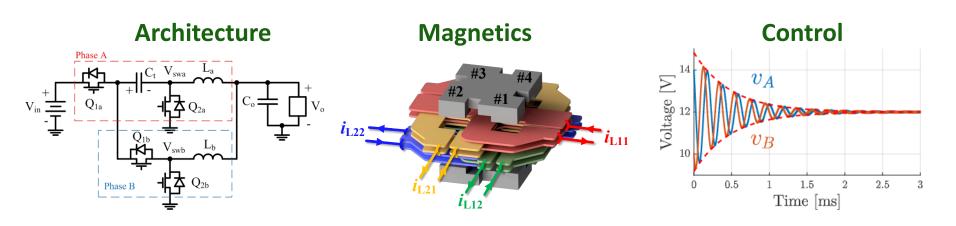
* Note: these designs usually have very different voltage regulation capability

Sponsors & Collaborators: Google (intel)


Youssef Elasser

Jaeil Baek

Loss Analysis and Performance Evaluation



Contents

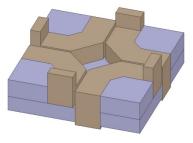
- 1. Architecture Hybrid SC Circuits and Magnetics for CPU-VRMs
- 2. Magnetics Open-Source Database and Design Methods
- 3. Control Synergy between FCML and Coupled Magnetics

Magnetics Enable New Design Opportunities

[Hayes, UC Cork, Ireland, 2004]

[Motherboard VRs ~2005]

Connection to output


Connection to MOSFETs

Phase 2

Phase 1

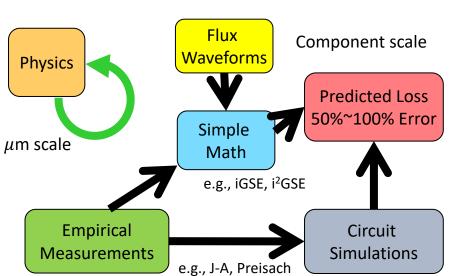
Phase 1

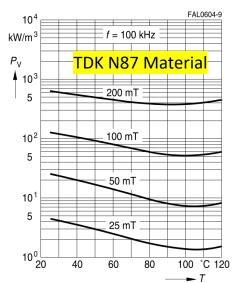
[Intel, FIVR]

[Princeton, LEGO-PoL]

[Sullivan, Integrated Coupled Magnetics]

Good Magnetic Design Needs Precise Models




No Good Models for Magnetic Materials

Steinmetz equation (1890s) $P_v = k \cdot f^a \cdot B^b$

No temperature, dc-bias, waveform shape information

Core loss design margin

Temperature ~ 50%-200%

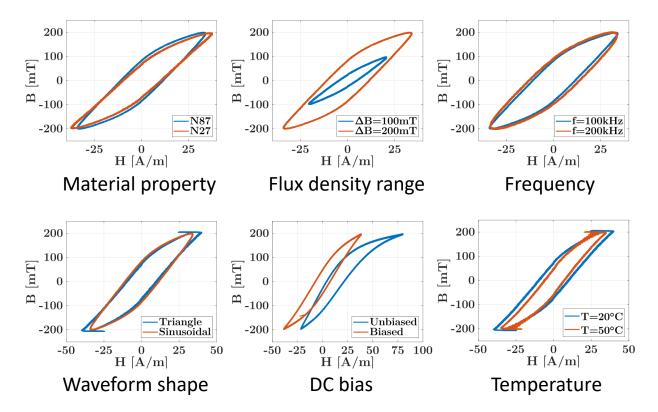
Dc Bias ~ 80%-200%

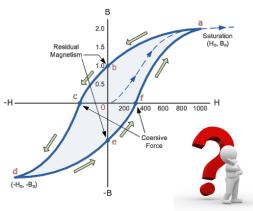
Batch2Batch ~ +/-20%

Geometry ~ +/-20%

Relaxation ~ +/-20%

Waveform ~ +/-50%


DO NOT WORK ...



Modeling B-H loops is Even More Challenging ...

How to capture all these factors under a unified modeling framework?

Modeling Magnetics with Machine Learning ...

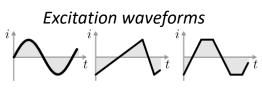
> Steinmetz Equation (SE), 1890s

$$P_V = k \cdot f^{\alpha} \cdot \hat{B}^{\beta}$$

3 parameters

> Improved Generalized Steinmetz Equation (iGSE), 2000s

$$P_V = \frac{1}{T} \int_0^T k_i \cdot \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} \cdot (\Delta B)^{\beta} \, \mathrm{d}t$$

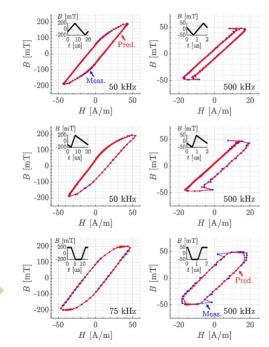

3 parameters

Improved-improved GSE (i²GSE), 2010s

$$P_V = \frac{1}{T} \int_0^T k_i \cdot \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} \cdot (\Delta B)^{\beta} \, \mathrm{d}t + \sum_{l=1}^n Q_{rl} \cdot P_{rl}$$

Neural Network Models

> 100 parameters



frequency, temperature, dc-bias

>100 parameters

Input: f, B, D, H_{DC}; Output: B-H Loops

A typical ML problem with mature software tools

Princeton-Dartmouth-Plexim MagNet Project (2019-2022)

Website Development

Magnetics Simulation

Automatic Data Acquisition

MagNet Database

Machine Learning Methods 📥

H. Li, M. Chen et al., "MagNet: an Open-Source Database for Data-Driven Magnetic Core Loss Modeling," APEC'22.

Physics Models

Haoran Li

D. Serrano



T. Guillod

Automatic Data Acquisition and Database Construction

Oscilloscope

 $\begin{array}{c} {\rm Main} \\ {\rm Power~Stage} \end{array}$

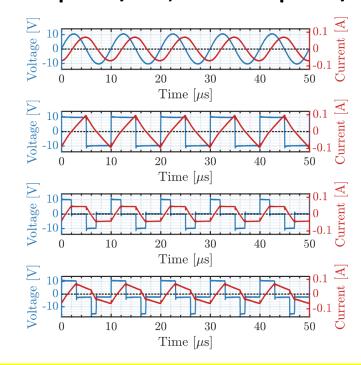
Heater

Oil Bath & Water Tank Magnetic Stirrer

• Frequency range: $50\sim500 \text{ kHz}$

Flux density range: 20~300 mT

• Temperature range: $25\sim90 \, ^{\circ}\text{C}$

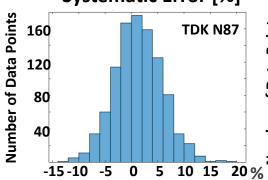

• Dc-bias range: $0\sim300 \text{ mT}$

Sinusoidal (f, B, THD)

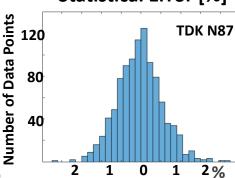
Triangular (f, B, D)

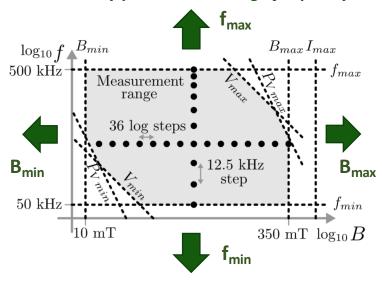
Trapezoidal (f, B, D_1, D_2)

50 datapoints/min, 3000 datapoints/hour


More than 300,000 B-H loop pairs available for 10 materials under different operating conditions

Data Quality Control of the MagNet Database




- Amplitude error
 - Voltage bias/gain
 - Current bias/gain
- Phase error
 - Voltage delay
 - Current delay
- Parasitic capacitance
- Temperature drift
- ...

Statistical Error [%]

- Amplitude noise
 - Voltage noise
 - Current noise
- Phase noise
 - Voltage noise
 - Current noise
- Quantization error
- Core geometry error
- ..

Limited by phase error at high frequency

Limited by amplitude error at low loss

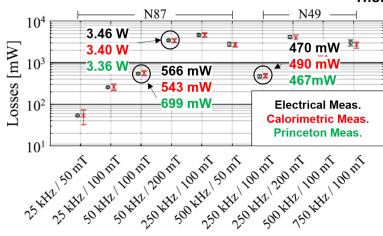
MagNet Data Quality (self-evaluated)

- ~10% core loss error
- 5% ~ 20% batch-to-batch variation

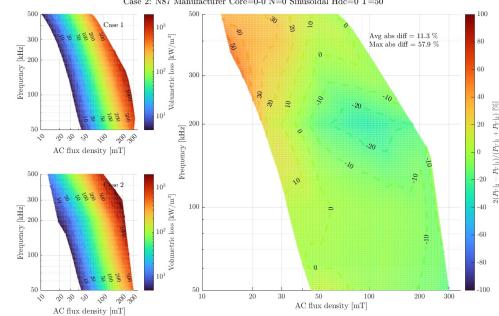
Compare to the "Ground Truth?"

Transient Calorimetric Measurement of Ferrite Core Losses up to 50 MHz

Panteleimon Papamanolis . Student Member, IEEE, Thomas Guillod . Member, IEEE, Florian Krismer . Member, IEEE, and Johann W. Kolar . Fellow, IEEE



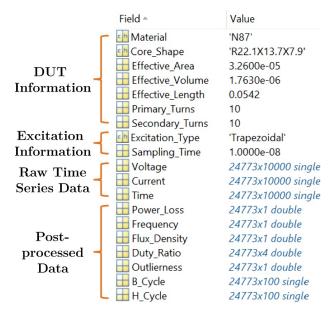
Thomas Guillod


Compare to private data from TDK

Case 1: N87 R22-1X13-7X7-9 Core=2-1 N=7 Sinusoidal Hdc=0 T=50 - VS -

Case 2: N87 Manufacturer Core=0-0 N=0 Sinusoidal Hdc=0 T=50

P. Papamanolis, T. Guillod, F. Krismer and J. W. Kolar, "Transient Calorimetric Measurement of Ferrite Core Losses up to 50 MHz," TPEL'21.



MagNet: Open-Source Power Magnetics Database

Raw data available for download in ".json", ".mat", ".hdf5", ".csv" on MagNet python matlab html5 excel

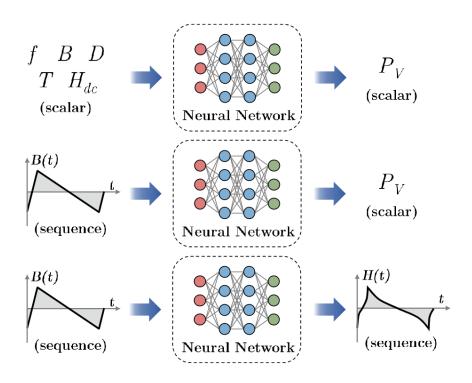
All details documented for cross-checking and verification

TABLE II
NUMBER OF DATA POINTS CURRENTLY IN THE MAGNET DATASET

Material	Sine	Tri.	Trap.	Total
TDK N27	1,037	9,106	16,147	26,290
TDK N30	1,194	8,703	16,021	25,918
TDK N49	1,144	8,991	16,318	26,453
TDK N87	3,860	36,092	63,000	102,952
Ferroxcube 3C90	946	8,758	15,330	25,034
Ferroxcube 3C94	1,079	9,072	16,315	26,466
Ferroxcube 3F4	697	7,477	12,906	21,080
Ferroxcube 3E6	1,251	6,406	12,459	20,116
Fair-Rite 77	1,018	9,109	16,080	26,207
Fair-Rite 78	980	9,051	15,850	25,881
Total	13,206	112,765	200,426	326,397

http://mag-net.princeton.edu

- Many other tools available on the website
- Monthly update with new data and new tools



Diego Serrano

Machine Learning Methods for Power Magnetics Modeling

• H. Li, M. Chen et al., "MagNet: an Open-Source Database for Data-Driven Magnetic Core Loss Modeling," APEC'22.

Scalar to Scalar Model

 Predicting volumetric loss based on operating conditions

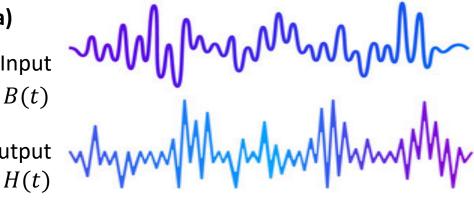
Sequence to Scalar Model

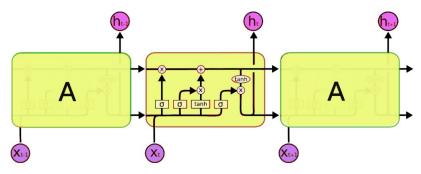
 Predicting volumetric loss based on excitation waveforms

Sequence to Sequence Model

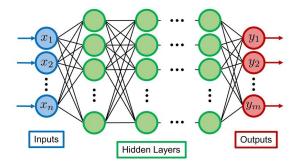
 Predicting time-domain magnetics response with excitation waveforms

Sequence-to-Sequence Neural Network

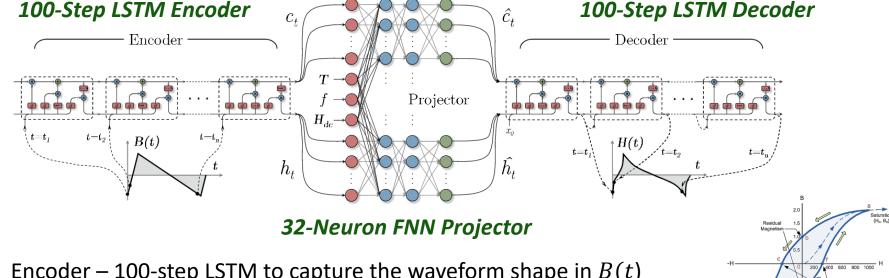



Language-to-language Q & A (Alexa)

- Voice input
- Voice output


Stock price forecasting

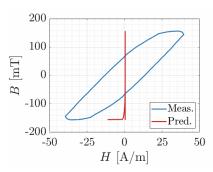
- Interest rate input
- Stock price output

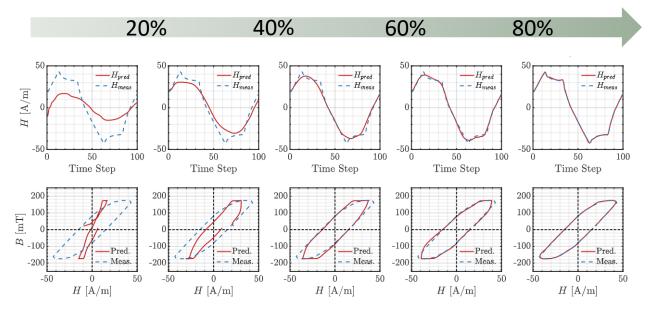


Feed-Forward Neural Network (FNN)

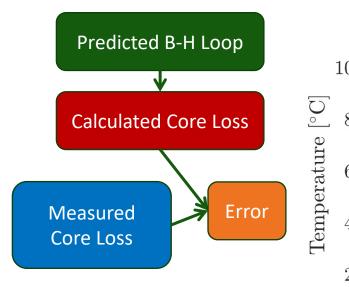
Seq2Seq LSTM Encoder-Decoder for B-H Loop Modeling

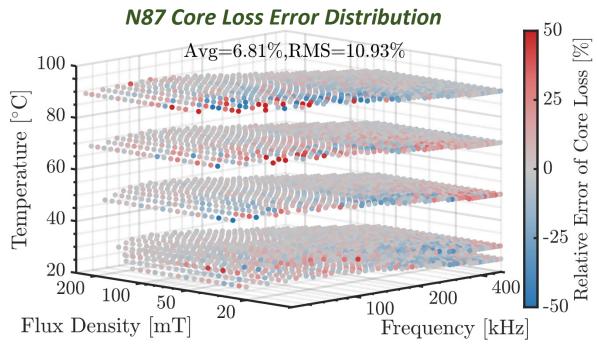
- Encoder 100-step LSTM to capture the waveform shape in B(t)
- Projector 32-neuron FNN to merge f, T, and dc-bias (H_{dc}) information
- Decoder 100-step LSTM to unfold the information and predict the H(t)
- D. Serrano, H. Li, M. Chen, et al., "Neural Network as Datasheet: Modeling B-H Loops of Power Magnetics with Sequence-to-Sequence LSTM Encoder-Decoder Architecture," COMPEL'22.



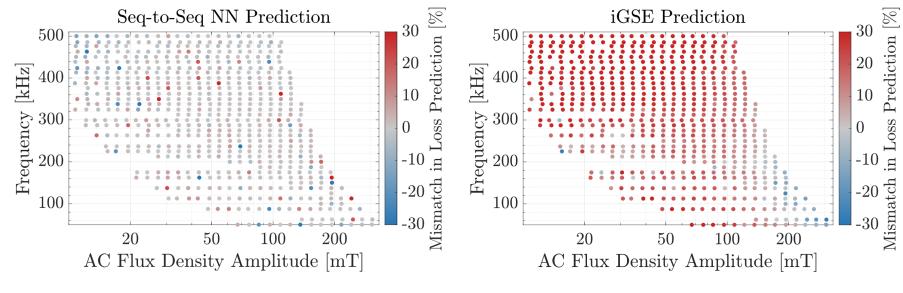

Neural Network Training Process

Training Process (N87)


- Database: 15,327 pairs of B-H loops, sine + triangular + trapezoidal
- 70% training + 20% validation + 10% testing
- Number of parameters in the NN: 27,969
- NN training time: about 4 hours on Google Colab standard access
- Prediction error: ~ 5% average MSE, and ~15% maximum MSE

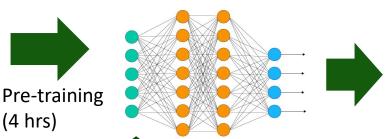

Predicting Core Loss based on B-H Loop

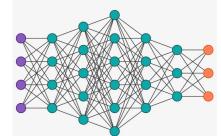
Neural Network predicted B-H Loop - > Calculate B-H Loop Area - > Predicted Core Loss


• H. Li, M. Chen et al., "MagNet: an Open-Source Database for Data-Driven Magnetic Core Loss Modeling," APEC'22.

Seq2Seq Neural Network v.s. iGSE

- iGSE accuracy depends on how the iGSE parameters are obtained
- Local iGSE may lead to better results, but require more parameters and computation
- Machine learning can well capture the intricate patterns of the magnetic core loss
- D. Serrano, H. Li, M. Chen, et al., "Neural Network as Datasheet: Modeling B-H Loops of Power Magnetics with Sequence-to-Sequence LSTM Encoder-Decoder Architecture," COMPEL'22.

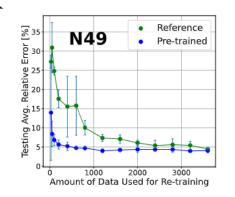

Transfer Learning for Data Size Reduction

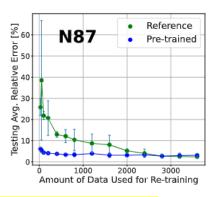

Large-scale database

N27, 3C90, 3F3, 3F4, ... 25°C, 50°C, 75°C, ... Sine, Triangle, Trapezoidal, ... Bias 0 mT, 100 mT, 200 mT, ...

Generic Neural Network

Specific Neural Network

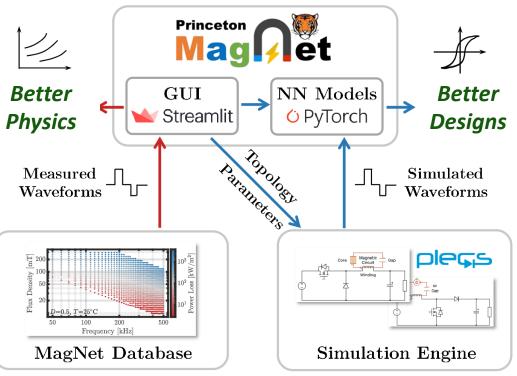



Small-scale database

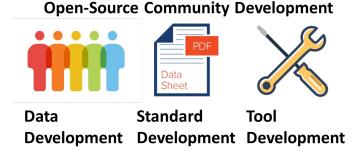
A new material N87, Sine wave, at 25°C No dc-bias data

Fine-tuning (10 mins)

- E. Dogariu, M. Chen, et al., "Transfer Learning Methods for Magnetic Core Loss Modeling," COMPEL'21.
- D. Serrano, M. Chen, et al., "Neural Network as Datasheet: Modeling B-H Loops of Power Magnetics with Sequence-to-Sequence Long-Short-Term-Memory Network," COMPEL'22.

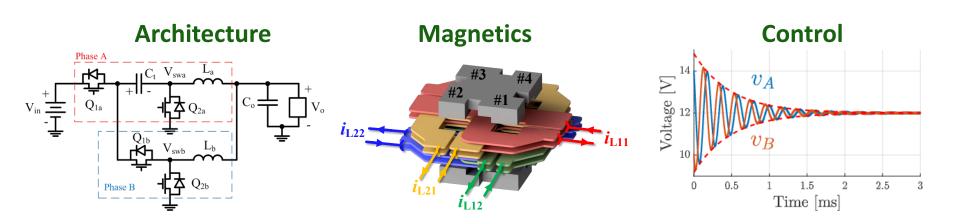


10x reduction in required data size

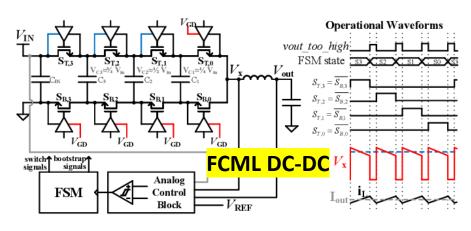


MagNet Ecosystem for Advanced Magnetics Design

https://github.com/PrincetonUniversity/Magnet



Contents



- 1. Architecture Hybrid SC Circuits and Magnetics for CPU-VRMs
- 2. Magnetics Open-Source Database and Design Methods
- 3. Control Synergy between FCML and Coupled Magnetics

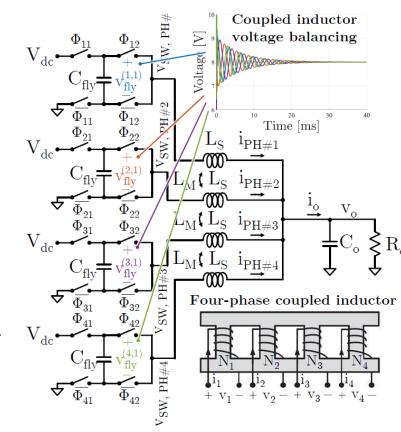
FCML Converter is Attractive in Many Applications

- J. S. Rentmeister and J. T. Stauth, "A 92.4% Efficient, 5.5V:0.4-1.2V, FCML Converter with Modified Ripple Injection Control for Fast Transient Response and Capacitor Balancing," CICC'20.
- J. Rodriguez et al., "Multilevel Converters: An Enabling Technology for High-Power Applications," Proceedings of the IEEE, vol. 97, no. 11, Nov. 2009.
- Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. A. de Rooij, "99% Efficient 2.5kW Four-Level Flying Capacitor Multilevel GaN Totem-Pole PFC," JESTPE'21.
- Y. Lei et al., "A 2-kW Single-Phase Seven-Level Flying Capacitor Multilevel Inverter With an Active Energy Buffer," TPEL'17.
- Reduced switch rating + lower current ripple + smaller magnetic size + frequency multiplication
- Lots of potential for both high power (HVDC) and low power (PMIC) applications
- Voltage balancing is a MUST to make FCML practical

Synergy Between FCML and Coupled Inductors

Three "orthogonal" ways of improving performance and reducing inductor size

Multiphase interleaving


Ripple reduction, current sharing

Multilevel switching

Ripple reduction, switch stress reduction

Coupled inductors

- Ripple reduction, smaller size, faster transient
- D. H. Zhou, Y. Elasser, J. Baek and M. Chen, "Reluctance-Based Dynamic Models for Multiphase Coupled Inductor Buck Converters," TPEL'22.
- D. H. Zhou, A. Bendory, C. Li, and M. Chen, "Multiphase FCML Converter with Coupled Inductors for Ripple Reduction and Intrinsic Flying Capacitor Voltage Balancing," APEC'22.
- D. H. Zhou, J. Celikovic, Y. Elasser, D. Maksimovic, and M. Chen, "Balancing Limits of Flying Capacitor Voltages in Coupled Inductor FCML Converters," COMPEL'22

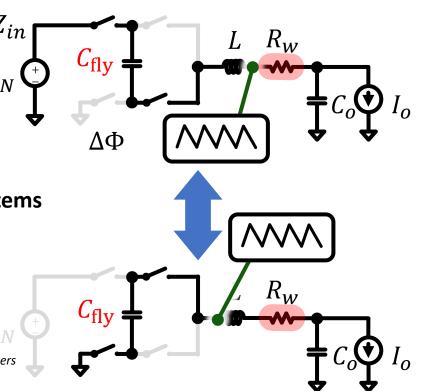
Previous Study on FCML Natural Balancing

Many factors may cause voltage imbalance

• Input impedance, timing, parasitics, etc.

Winding resistance helps with balancing

Naturally exist in all FCML converters


Natural balancing is weak in low loss (high-Q) systems

Low Q inductor -> weak natural balancing

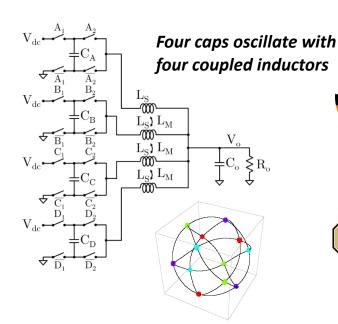
Active balancing challenging / impractical at HF

Current sensing, analog/digital delay, etc ...

- Z. Xia, B. L. Dobbins, J. T. Stauth, "Natural Balancing of Flying Capacitor Multilevel Converters at Nominal Conversion Ratios", COMPEL'19.
- Z. Ye, Y. Lei, Z. Liao, and R. C. N. Pilawa-Podgurski, "Investigation of Capacitor Voltage Balancing in Practical Implementations of Flying Capacitor Multilevel Converters," TPEL'21.

Multi-Resonant Balancing with Coupled Inductors

Imbalance in one capacitor leads to current imbalance in the coupled inductor


Independent from winding resistance

Current imbalance in the coupled inductor helps to pull the other capacitor back

 Negative feedback mechanism to "pull" the capacitor voltages together

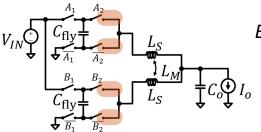
Automatic voltage balancing and multiresonant of the flying capacitor voltages

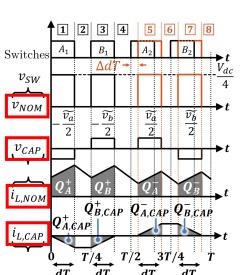
 Two capacitor "resonate" with the coupled inductor and reach a balance

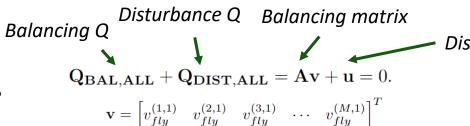
Daniel Zhou

Janko Celikovic (with Prof. Maksimovic)

- D. H. Zhou, A. Bendory, C. Li, and M. Chen, "Multiphase FCML Converter with Coupled Inductors for Ripple Reduction and Intrinsic Flying Capacitor Voltage Balancing," APEC'22.
- D. H. Zhou, J. Celikovic, Y. Elasser, D. Maksimovic, and M. Chen, "Balancing Limits of Flying Capacitor Voltages in Coupled Inductor FCML Converters," COMPEL'22.


How to approach this multi-resonant problem?


Four state variables: v_1 , v_2 , i_1 , i_2 Sensitive to d_1 , d_2 , d_3 , d_4

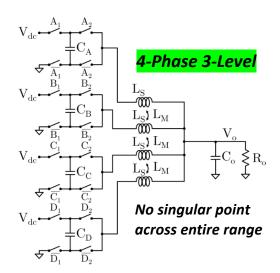


Three-Level Multiphase Coupled FCML Converter

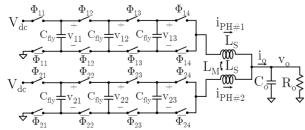
$$\mathbf{A}_{M\text{-phase}} = (dT)^2 \frac{\mathcal{R}_C}{N^2} \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 \\ -1 & 0 & 1 & \cdots & 1 \\ -1 & -1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & -1 & \cdots & 0 \end{bmatrix}$$
• Non-invertible for odd M
• Invertible for even M
• Even phases (2,4,6,...) better
• Three-phase coupled inductor FCML not attractive (5,7,9,...)

$$\mathbf{v} = \begin{bmatrix} \tilde{v}_{\text{fly}}^{(1,1)} \\ \tilde{v}_{\text{fly}}^{(2,1)} \\ \tilde{v}_{\text{fly}}^{(3,1)} \\ \tilde{v}_{\text{fly}}^{(4,1)} \end{bmatrix} = -\mathbf{A}^{-1}\mathbf{u} = V_{\text{dc}} \times \frac{\Delta t}{T} \times \frac{\mathcal{R}_L + 4\mathcal{R}_C}{T} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$
• Higher coupling coefficient Lower voltage imbalance

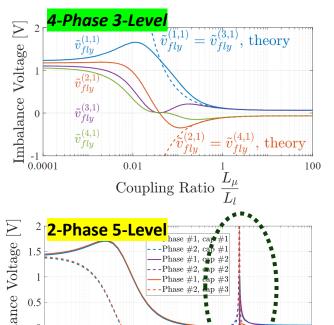
Inverse coupling coefficient

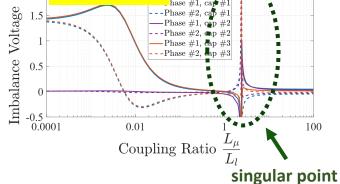

Disturbance factors

- Non-invertible for odd M
- - FCML not attractive (5,7,9,...)


- Stronger coupling better
- D. H. Zhou, J. Celikovic, Y. Elasser, D. Maksimovic, and M. Chen, "Balancing Limits of Flying Capacitor Voltages in Coupled Inductor FCML Converters," COMPEL'22.

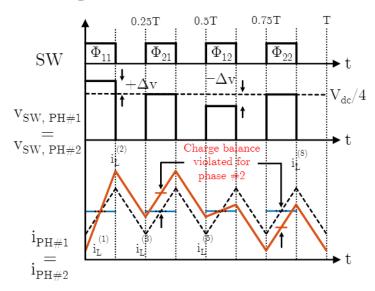
How about Multilevel and Multiphase?




2-Phase 5-Level

No singular point for duty ratio
One singular point for coupling coefficient

- Asymmetry in circuits and magnetics removes singularity
- High enough coupling coefficient removes singularity
- Good models and active control removes singularity
- D. H. Zhou, J. Celikovic, Y. Elasser, D. Maksimovic, and M. Chen, "Balancing Limits of Flying Capacitor Voltages in Coupled Inductor FCML Converters," COMPEL'22.



Findings with Piece-Wise Linear Model (Janko)

Even Phase, Fully Coupled, Arbitrary Level

Levels	Coupled Inductor Singularities. $0 < d < 1$		Discrete Inductor Singularities, $0 < d < 1$ [16]
3	0		4
4	0		0
5	0		8
6	0		0
7	0		12
8	0		0
9	0		16
10	0		0
11	0		20

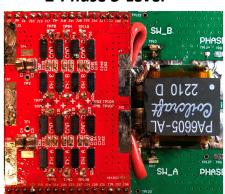
Credit: Janko Celikovic, Daniel Zhou

- With even phases, fully coupled inductors can remove all singularity, system robust;
- If partially coupled, singularities emerge at special duty ratio and coupling coefficient combos.

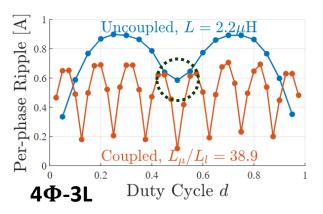
Robust FCML =

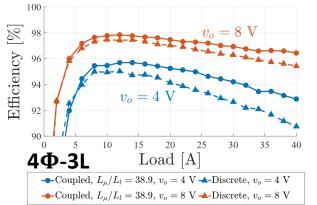
Even Phase, Even Level Strong Coupling

- D. H. Zhou, J. Celikovic, Y. Elasser, D. Maksimovic, and M. Chen, "Balancing Limits of Flying Capacitor Voltages in Coupled Inductor FCML Converters," COMPEL'22.
- J. Celikovic, R. Das, H.-P. Le, and D. Maksimovic, "Modeling of Capacitor Voltage Imbalance in Flying Capacitor Multilevel DC-DC Converters," COMPEL'19.


Experimental Verification of the FCML+CoupL Theory

4-Phase 3-Level


2-Phase 5-Level



Parameter/Component Value

f_{sw}
V_{dc}
C_{fly}
Custom Coupled Inductor L_l
Custom Coupled Inductor L_{μ}
Off-the-shelf Coupled Inductor
Two-phase Coupled Inductor
Discrete Inductor
Switches
Controller

500 kHz
16 V
1206 10 μF × 4
192 nH
7.44 uH
Eaton CL1108-4-50TR-R
Coilcraft PA6605-AL
Coilcraft XAR7030-222MEB
EPC2024
TMS320F28379D

Two prototypes

- One 4Ф-3L
- One 2Ф-5L

Ripple Reduction

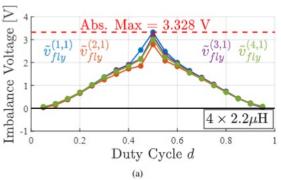
Unbalanced FCML voltage leads to increased current ripple

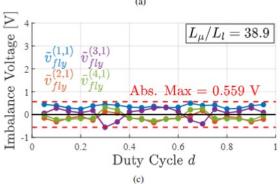
Efficiency Benefits

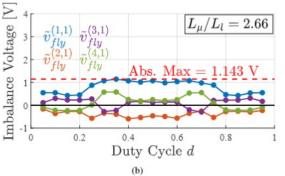
Ripple reduction improves the efficiency

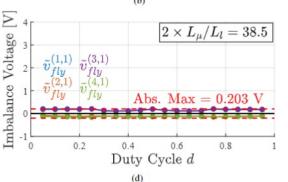
M. Chen and C. R. Sullivan,
"Unified Models for Coupled
Inductors Applied to
Multiphase PWM
Converters," TPEL'21.

Voltage Balancing with Coupled Inductors


4-Phase 3-Level , Similar total L_{μ} , Nominal Flying Capacitor Voltage: 8V


Uncoupled 4× discrete 2.2 μH inductors

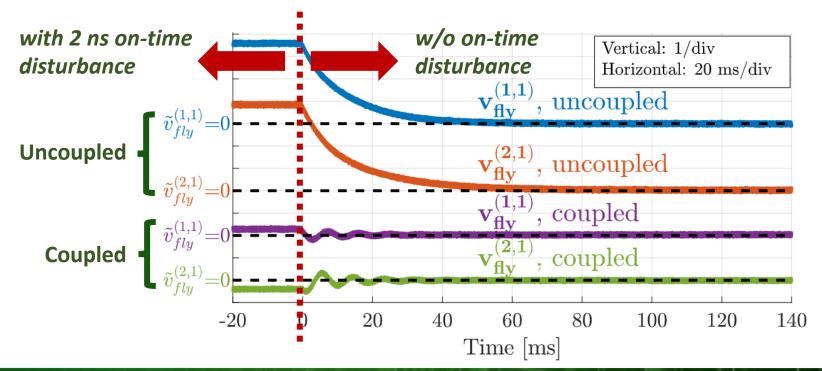

Tightly Coupled


 $\frac{L_{\mu}}{L_{l}} = 38.9$

Four phases

Weakly Coupled Four phases

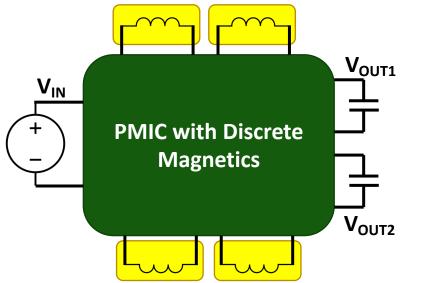
$$\frac{L_{\mu}}{L_{l}} = 2.66$$

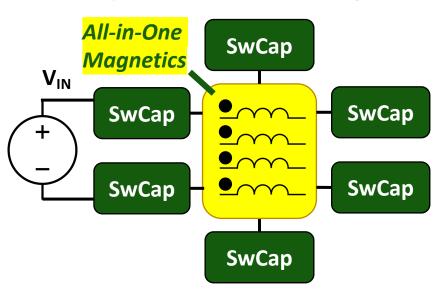

Pairly Coupled 2×2 phases

$$\frac{L_{\mu}}{L_{I}} = 38.9$$

Dynamics of the Balancing Mechanism

- Coupled inductors considerably reduce imbalance
- Flying capacitor alternation causes oscillations during dynamic balancing


Hybrid Switched-Cap Circuits with All-in-One Magnetics



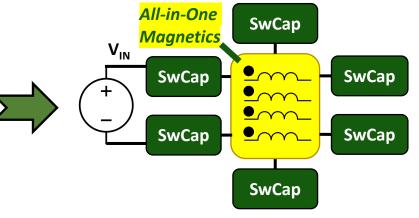
Multiple ICs, All-in-ONE magnetics

Hybrid switched capacitor magnetics power conversion:

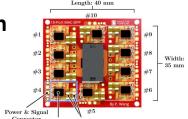
Circuit architecture + novel magnetics + precise models + advanced control

Switched Capacitor Circuits and All-in-One Magnetics

Switched capacitor circuits and all-in-one magnetics co-design



Magnetic (Information) Memory



1960s, MIT Museum Servomechanisms Lab

Magnetic (Energy) Memory

2020s, Princeton Power Electronics Research Lab

Related Publications

Hybrid Switched Capacitor Circuit Architecture and Design Methods

- J. Baek, Y. Elasser, K. Radhakrishnan, H. Gan, J. Douglas, H. K. Krishnamurthy, X. Li, S. Jiang, C. R. Sullivan, and M. Chen, "Vertical Stacked LEGO-PoL CPU Voltage Regulator," IEEE Trans. on Power Electron., vol. 37, no. 6, pp. 6305-6322, June 2022.
- Y. Chen, P. Wang, H. Cheng, G. Szczeszynski, S. Allen, D. M. Giuliano, and M. Chen, "Virtual Intermediate Bus CPU Voltage Regulator," IEEE Trans. on Power Electron., vol. 37, no. 6, pp. 6883-6898, June 2022.
- Coupled Inductor Models, FCML, and Dynamic Analysis
- M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 14155-14174, Dec. 2021.
- C. R. Sullivan and M. Chen, "Coupled Inductors for Fast-Response High-Density Power Delivery: Discrete and Integrated," IEEE Custom Integrated Circuits Conference (CICC), April 2021.
- D. H. Zhou, Y. Elasser, J. Baek, and M. Chen, "Reluctance-Based Dynamic Models for Multiphase Coupled Inductor Buck Converters," IEEE Trans. on Power Electronics, vol. 37, no. 2, pp. 1334-1351, Feb. 2022.
- P. Wang, Y. Elasser, V. Yang, and M. Chen, "WAN Converter: A Family of Multicell PWM Converter with All-in-One Magnetics," IEEE Applied Power Electronics Conference (APEC), Houston, March 2022.
- P. Wang, D. H. Zhou, V. Yang and M. Chen, "Matrix Coupled All-in-One Magnetics for PWM Power Conversion," IEEE Workshop on Control and Modeling of Power Electronics (COMPEL), Cartagena de Indias, Colombia, 2021.
- D. H. Zhou, A. Bendory, C. Li, and M. Chen, "Multiphase FCML Converter with Coupled Inductors for Ripple Reduction and Intrinsic Flying Capacitor Voltage Balancing," APEC'22.

Related Publications

Machine Learning and Magnetics Core Loss Modeling

- H. Li, D. Serrano, T. Guillod, E. Dogariu, A. Nadler, S. Wang, M. Luo, V. Bansal, Y. Chen, C. R. Sullivan, and M. Chen, "MagNet: an Open-Source Database for Data-Driven Magnetic Core Loss Modeling," IEEE Applied Power Electronics Conference (APEC), Houston, March 2022.
- E. Dogariu, H. Li, D. Serrano López, S. Wang, M. Luo and M. Chen, "Transfer Learning Methods for Magnetic Core Loss Modeling," IEEE Workshop on Control and Modeling of Power Electronics (COMPEL), Colombia, 2021.
- H. Li, S. Lee, M. Luo, C. R. Sullivan, Y. Chen and M. Chen, "MagNet: A Machine Learning Framework for Magnetic Core Loss Modeling," IEEE Workshop on Control and Modeling of Power Electronics (COMPEL), Aalborg, Denmark, 2020.

Wireless Power Transfer, Energy Router, Differential Power Processing, and Robotics

- M. Liu, Y. Chen, Y. Elasser, and M. Chen, "Dual Frequency Hierarchical Modular Multilayer Battery Balancer Architecture," IEEE Trans. on Power Electronics, vol. 36, no. 3, pp. 3099-3110, March 2021.
- P. Wang, Y. Chen, J. Yuan, R. C. N. Pilawa-Podgurski, M. Chen, "Differential Power Processing for Ultra-Efficient Data Storage," IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4269-4286, April 2021.
- P. Wang, R. C. N. Pilawa-Podgurski, P. Krein and M. Chen, "Stochastic Power Loss Analysis of Differential Power Processing," IEEE Trans. on Power Electronics, vol. 37, no. 1, pp. 81-99, Jan. 2022.
- Y. Chen, P. Wang, Y. Elasser, and M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13210-13224, Dec. 2020.
- Z. Zheng, P. Kumar, Y. Chen, H. Cheng, S. Wagner, M. Chen, N. Verma, and J. Sturm, "Scalable Simulation and Demonstration of Jumping Piezoelectric 2-D Soft Robots," IEEE International Conference on Robotics and Automation (ICRA), 2022.

