
LECTURE 3

1. The Peano existence theorem

As in last lecture we formulate the results for scalar valued equations. However, just as in last lecture,
most of the results and proofs to follow, in particular Theorem 1.1 as well as Theorem 2.2, can be essentially
immediately adapted to the case of first order systems of ODEs.

We again consider the general first order initial value problem

(1.1) y′ = f(x, y), y(ξ) = η,

but this time, we only assume that f(x, y) is continuous, and no longer necessarily satisfies the Lipschitz
condition |f(x, y)− f(x, ȳ)| ≤ L|y − ȳ|. Specifically, we make the

Assumption: For I = [ξ, ξ + a], J = [η − b, η + b], we have f(·, ·) ∈ C0(I × J), |f |C0(I×J) ≤M for some
M > 0, a > 0, b > 0.

Then we have the following fundamental

Theorem 1.1. (Peano’ theorem) Under the preceding assumption, there exists a solution y(x) ∈ C1(Ĩ), with

Ĩ = [ξ, ξ + min{a, b
M+1}].

Remark 1.2. The solution is not unique in general. We only need to recall the problem y′ =
√
|y|.

Remark 1.3. We did not state the strongest possible conclusion as far as the domain of existence of the
solution is concerned

As so often in analysis, the important thing to remember is not so much the theorem per se, but the
technique of proof. In sharp contrast to the Picard theorem, here the proof will be non-constructive, and rely
on a compactness argument. Both the Picard iteration and the compactness type argument are extremely
important and recur in multiple contexts in the realm of ODE and PDE.

Proof. The idea is to reduce to the situation in Picard’s theorem. For this, we begin by mollifying the function
f(x, y) with respect to the variable y. This means the following: pick a function

χ(y) ∈ C∞(R)

such that χ ≥ 0 and χ(y) = 0 provided y /∈ [1, 2]. Furthermore, we may assume that∫
R

χ(y) dy = 1

By re-scaling the function χ(y), we introduce the functions

χε(y) := ε−1χ(
y

ε
), , ε > 0

Then note that suppχε(y) ⊂ [ε, 2ε], while also
∫
R
χε(y) dy = 1.

The mollification of f is now given by the family of functions

(1.2) fε(x, y) := f ∗y χε(x, y) =

∫
R

f(x, y − z)χε(z) dz

Note that we only mollify with respect to the y-variable. The above expression is only formal, and we need
to make sure that it is well-defined. Thus we restrict to y ∈ [η − bM

M+1 , η + bM
M+1 ], and further ε < b

2(M+1) . In

1



2 LECTURE 3

order to be able to invoke the version of Picard’s theorem we proved last time, we need to extend fε(x, y) to
all values of y ∈ R. This we can easily by extending fε(x, y) as a constant beyond the values y = η ± bM

M+1 .
Then we have the following simple

Lemma 1.4. Under the above restrictions on y, ε > 0, the expression (1.2) is well-defined. Furthermore,
extending fε(x, y) to all values of y as above, we have the bounds

|fε(x, y)|C0(R) ≤M

where R = I ×R as long as ε < b
2(M+1) ; further, we have the Lipschitz bound

(1.3) |fε(x, y)− fε(x, ȳ)| ≤ C

ε
M |y − ȳ|

The proof of the lemma is left as a simple exercise.

We can now apply Picard’s theorem as proved last time, to the initial value problems

(1.4) y′ = fε(x, y), y(ξ) = η,

Note that here we use L = C
εM . We obtain unique C1-regular solutions yε(x) on I = [ξ, ξ + a]. It is then

intuitively clear that one way to potentially obtain a solution to the original problem (1.1) is to let ε→ 0 and
look for a limit to yε(x). The key to extract such a limit comes from a crucial compactness property of the
family of functions {yε(x)}ε>0. To prepare this, we first state the simple

Lemma 1.5. For x ∈ Ĩ (defined in the statement of theorem 1.1), we have the uniform bounds

|yε(x)− η| ≤ bM

M + 1
, |y′ε(x)| ≤M

The proof is immediate; for example, using (1.4), we get

|yε(x)− η| ≤
∫ x

ξ

M ds ≤M |x− ξ|

from which the first bound follows. The second bound is immediate.

The preceding lemma implies that the family of functions {yε(x)}ε > 0 is uniformly continuous on Ĩ. The
desired compactness is then a consequence of the following very general fact:

Proposition 1.6. (Arzela-Ascoli) Let K be a compact metric space, and A ⊂ C0(K) a non-empty subset.
Then A is pre-compact precisely if the following two conditions are satisfied:

(i) A is bounded: ∃M ∈ R such that maxx∈K |f(x)| ≤M ∀f ∈ A.

(ii) A is uniformly continuous: ∀ε > 0, ∃δε > 0 such that ∀x, y ∈ K with ρ(x, y) < δε, we have

|f(x)− f(y)| < ε, f ∈ A

Assuming this for now, we finish the proof of Peano’s theorem as follows: Letting A = {yε}ε>0 ⊂ C0(Ĩ),
Lemma 1.5 implies (check!) that both conditions of Proposition 1.6 are satisfied. In particular, choosing
any sequence {εj}j≥1 with εj → 0, we can select a subsequence {εjk}k≥1 ⊂ {εj}j≥1 with the property that

{yεjk }k≥1 converges with respect to | · |C0(Ĩ) to some y∗ ∈ C0(Ĩ). For simplicity, we again label the sub-

sequence as {εj}j≥1.

Claim: The function y∗(x) solves (1.1) on Ĩ.

Proof. (Claim) First it is clear that yε(ξ) = η ∀ε > 0, so that clearly also y∗(ξ) = η. To see that y′∗ = f(x, y∗)

on Ĩ, we observe that

(1.5) lim
j→∞

fεj (x, yεj (x)) = f(x, y∗(x)), x ∈ Ĩ
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uniformly with respect to x ∈ Ĩ. This in turn follows in 2 steps: first,

|fεj (x, yεj )− fεj (x, y∗)| ≤
∫
R

|f(x, yεj − z)− f(x, y∗ − z)|χεj (z) dz ≤ max
z∈[εj ,2εj ]

{|f(x, yεj − z)− f(x, y∗ − z)|}

whence by locally uniform continuity of f(·, ·), we get

lim
j→∞

|fεj (x, yεj )− fεj (x, y∗)| = 0

uniformly with respect to x ∈ Ĩ.

Second, we have

lim
ε→0
|fε(x, y∗(x))− f(x, y∗(x))| = 0, x ∈ Ĩ

uniformly with respect to x ∈ Ĩ. To see this, write for small ε

fε(x, y∗(x))− f(x, y∗(x)) =

∫
R

[f(x, y∗ − z)− f(x, y∗)]χε(z) dz

provided x ∈ Ĩ; here we of course use that
∫
χ(z) dz = 1. The continuity of f(·, ·) together with non-negativity

of χε(z) (!) imply

lim sup
ε→0

|
∫
R

[f(x, y∗ − z)− f(x, y∗)]χε(z) dz| ≤ lim sup
ε→0

max
z∈[ε,2ε]

|f(x, y∗ − z)− f(x, y∗)|
∫
χε(z) dz = 0

The two preceding steps imply the validity of (1.5). Using it, we infer

y∗(x) = η +

∫ x

ξ

f(t, y∗(t)) dt,

which implies y′∗ = f(x, y∗). �

This completes the proof of Peano’s theorem, up to the Arzela-Ascoli theorem. �

1.1. Proof of Arzela-Ascoli. Here we prove the sufficiency of conditions (i), (ii) in Arzela-Ascoli, leaving
the necessity as an exercise. Thus, assuming (i), (ii), we show that the set A ⊂ C0(K) is pre-compact.
This is equivalent to the statement that for every sequence {fn}n≥1 ⊂ A, there exists a sub-sequence
{fnk
}k≥1 ⊂ {fn}n≥1 converging in C0(K).

Thus let {fn}n≥1 ⊂ A be given. To construct a converging sub-sequence, we shall use a Cantor diagonal
procedure to find a sub-sequence converging on a countable dense subset of K. We first pick such a subset.
Put εk = 1

k , k ∈ N. By compactness of K, for each k ∈ N, we can cover K by finitely many discs

D1
εk
, D2

εk
, . . . , Djk

εk
of radius εk, centered at p1k, p

2
k, . . . , p

jk
k , respectively. By re-labeling, we put ∪∞k=1 ∪

jk
l=1

plk = {pk}k≥1. By property (i), we can pick a subsequence {fn11 , fn12 , . . . , fn1l
, . . .} ⊂ {fn}n≥1, such that

{fn1l
(p1)}l≥1 converges. Next, pick {fn2l

}l≥1 ⊂ {fn1l
}l≥1 such that also {fn2l

(p2)}l≥1 converges. Inductively,
pick {fnrl

}l≥1 ⊂ {fn(r−1)l
}l≥1 such that

{fnrl
(pj)}l≥1, j = 1, 2, . . . , r

all converge. Then the diagonal sequence {fnrr
}r≥1 has the property (check!) that

{fnrr (pj)}r≥1

converges for all j ≥ 1. Now we conclude via the following

Claim: The sequence {fnrr
}r≥1 converges uniformly to some f ∈ C0(K).



4 LECTURE 3

Proof. (Claim) We first prove that {fnrr
(x)}r≥1 converges for each x ∈ K. Given x ∈ K, pick a sequence

{pjk}k≥1 ⊂ {pk}k≥1 with limk→∞ pjk = x. Given ε > 0, pick k0 ∈ N such that |fn(pjk)− fn(x)| < ε
2 ∀k ≥ k0,

∀n ≥ 1; this is possible on account of (ii). Then

lim sup
k,l→∞

|fnkk
(x)− fnll

(x)| ≤ lim sup
k,l→∞

|fnkk
(pjk0

)− fnll
(pjk0

)|

+ lim sup
k→∞

|fnkk
(x)− fnkk

(pjk0
)|

+ lim sup
l→∞

|fnll
(x)− fnll

(pjk0
)|

≤ ε

Since ε > 0 is arbitrary, the sequence {fnkk
(x)}k≥1 is Cauchy. Define f(x) := limk→∞ fnkk

(x). In order to
complete the proof of the Claim, it suffices to show that this limit is uniform in x(why?).

Given ε > 0, pick a finite subset B := {pjk}
Lε

k=1 ⊂ ∪∞k=1pk with the property that ∀x ∈ K ∃pjl ∈ B with
ρ(x, pjl) < δ ε

3
with δε as in (ii). Then for any x ∈ K we have

|f(x)− fnkk
(x)| ≤ lim sup

r→∞
|fnrr

(pjl)− fnkk
(pjl)|

+ lim sup
r→∞

|fnrr
(pjl)− fnrr

(x)|

+ |fnkk
(pjl)− fnkk

(x)|

Since {fnkk
(pjl)}k≥1 converges, we can pick k0 sufficiently large such that lim supr→∞ |fnrr

(pjl)−fnkk
(pjl)| <

ε
3 for k ≥ k0, l = 1, 2, . . . , Lε. Hence |f(x)− fnkk

(x)| ≤ ε for all k ≥ k0, uniformly in x ∈ K. �

2. The structure of the set of solutions

The treatment here follows essentially Hormander, ’Lectures on Nonlinear Hyperbolic Differential Equa-
tions’, Springer, p. 5-6. We already know that uniqueness of solutions for (1.1) fails in general under the
condition f ∈ C0. It is then natural to ask what the totality of solutions for the problem (1.1) looks like. In

particular, given some x0 ∈ Ĩ, we can ask what the set {y(x0)| y(x) solves (1.1)} looks like.

Example Consider (*) y′ =
√
|y|, y(0) = 0. Here we know that the non-zero solutions (without initial

condition) are either of the form y(x) = ± 1
4 (±x + C)2, ±x ≥ −C, where C ∈ R is arbitrary, or else have

graphs that arise by joining part of the graph of y(x) = 0 with one or two of the preceding graphs. In
particular, for x0 ≥ 0, say, the solutions y(x) with the initial condition y(0) = 0 satisfy

y(x0) =
1

4
(x0 + C)2, −x0 ≤ C ≤ 0

Thus we get {y(x0)| y(x) satisfies (*)} = [0,
x2
0

4 ], a closed interval.

It turns out that the preceding example gives the generic behavior. In the sequel, we shall want to get

rid of the added requirement that y ∈ J , and in fact assume that f ∈ C0(I × R). Then, letting J,M, Ĩ be

defined as before(for some b > 0), we claim that as long as we work on Ĩ, any solution of (1.1) (without the

requirement that y(x) ∈ J) on Ĩ will in fact take values in J , i. e. we have an a priori bound on solutions

defined on Ĩ:

Lemma 2.1. Assume that y ∈ C1(Ĩ ,R) solves (1.1). Then we have

y(x) ∈ Jo

for each x ∈ Ĩ.

Proof. If not, then there is a solution y(x) which attains the value η ± b for some x1 ∈ Ĩ. By continuity, we
may assume that y(x1) = η ± b, y(x) ∈ Jo for x ∈ [ξ, x1). But then

y(x1) = η +

∫ x1

ξ

f(s, y(s)) ds,
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and ∣∣ ∫ x1

ξ

f(s, y(s)) ds
∣∣ ≤M · b

M + 1
< b

and so y(x1) ∈ Jo, a contradiction. �

In the following, we now assume f ∈ C0(I × R), and we fix some b > 0 and construct J,M, Ĩ as in the

preceding, so that we know that at least one solution will exist on Ĩ. Such a solution will necessarily take
values in Jo.

Theorem 2.2. Under the same assumptions as for theorem 1.1, for any x0 ∈ Ĩ, the set

Jx0
:= {y(x0)| y(x) solves (1.1) on Ĩ}

is a compact and connected.

Proof. The compactness follows from the boundedness of Jx0 , in turn a consequence of the preceding lemma,
as well as the closedness of Jx0

. To see the latter, assume that yn(x), n = 1, 2, . . ., solve(1.1), and that
yn(x0)→ y∗ ∈ R. By uniform continuity and boundedness, as in the proof of Peano’s theorem, for the yn(x),

we can then extract a subsequence {ynk
(x)}, which converges uniformly on Ĩ to some limit y∗(x). This limit

solves (1.1), as follows as usual by passing to the integral equation. In particular, we have yn(x0) → y∗(x0),
whence Jx0

is closed.
In order to complete the proof of the theorem, we have to show that Jx0

is connected. this we do via
contradiction: assume Jx0

is not connected. Then we can write

(2.1) Jx0
= J1 ∪ J2,

where both J1,2 are compact, and we have dist(J1, J2) = 2δ > 0. Pick two solutions y1,2(x) of (1.1) with the
property that y1(x0) ∈ J1, y2(x0) ∈ J2. The idea then is to deform y1(x) into y2(x), and thereby construct a
solution of (1.1) with y(x0) in neither J1 nor J2, contradicting (2.1). The technical complication here comes
from the fact that we cannot use Peano’s existence theorem to construct this deformation, on account of the
lack of uniqueness of solutions; instead, we shall invoke the Picard theorem, via slick modification of f(x, y):

First, we pick a sequence fj(x, y) which is C∞ with respect to y, and such that

fj(x, y)→ f(x, y)

uniformly for x ∈ Ĩ, y ∈ [η − bM
M+1 , η + bM

M+1 ], as in the proof of Theorem 1.1. Next, introduce the auxiliary
functions

f1j (x, y) := fj(x, y) + f(x, y1(x))− fj(x, y1(x))

f2j (x, y) := fj(x, y) + f(x, y2(x))− fj(x, y2(x))

Observe that we then still have

y′1(x) = f1j (x, y1(x)), y′2(x) = f2j (x, y2(x)),

but the functions f1,2j (x, y) are now C∞ smooth with respect to y. Also, note that

lim
j→∞

f1,2j (x, y) = f(x, y)

for x, y as above.

To obtain the deformation of y1(x) into y2(x), we now consider, for each λ ∈ [0, 1] the auxiliary problems

(2.2) y′j,λ = λf1j (x, yj,λ) + (1− λ)f2j (x, yj,λ), yj,λ(ξ) = η,

By Picard’d theorem, there is a unique solution yj,λ on Ĩ, and of course when λ = 0, yj,λ(x) = y2(x), while
when λ = 1, yj,λ(x) = y1(x) (bad notation...). Specializing to x = x0, we see that as λ traces out [0, 1],
yj,λ(x0) connects y1(x0) ∈ J1 to y2(x0) ∈ J2. To be more precise, we need
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Exercise: verify that yj,λ depends continuously on λ (for fixed j).

Since we have dist(J1, J2) = 2δ > 0, for each j ∈ N we can find λj ∈ (0, 1) such that

dist(yj,λj
(x0), J1 ∪ J2) ≥ δ

Using the same compactness argument as in the proof of Peano’s theorem, the set {yj,λj (x)}j≥1 ⊂ C0(Ĩ) is

compact, whence we can extract a uniformly converging subsequence, which converges to some y∗(x) ∈ C0(Ĩ).
Then

Exercise: verify that y∗(x) is C1 and solves (1.1).

We then clearly also have dist(y∗(x0), J1 ∪ J2) ≥ δ, and this contradicts (2.1). �

We can refine the preceding theorem specifically for scalar ODEs a bit as follows: we know that

Jx0 = [a(x0), b(x0)], x0 ∈ Jx0 ,

for some functions a(x0), b(x0). The next theorem says that these functions are themselves solutions of (1.1).
Specifically:

Theorem 2.3. Both the upper limit a(x0) and b(x0), x0 ∈ Ĩ, solve (1.1); we call them the maximal, resp.
the minimal solution.

Proof. We first note that whenever y1(x), y2(x) solve (1.1), so does

y∗(x) := max{y1(x), y2(x)}
To see this, distinguish between points x where y1(x) 6= y2(x) and those where y1(x) = y2(x). In the first
case, there is a neighborhood of x where max{y1(x), y2(x)} = y1(x) or y2(x), whence the statement is clear.
If we have y1(x) = y2(x), then by differentiability of y1,2(x), we have

y1(x+ t) = y1(x) + tf(x, y1(x)) + o(t), y2(x+ t) = y2(x) + tf(x, y(x)) + o(t)

from which we infer
y∗(x+ t) = y∗(x) + tf(x, y∗(x)) + o(t)

This implies differentiability of y∗(x̃) at x̃ = x, and y′∗(x) = f(x, y∗(x)).

Now for each x̃ ∈ Ĩ, by definition of b(x̃) we can choose a solution yx̃(x) of (1.1) with b(x̃) = yx̃(x̃). Then
pick a countable dense subset

x̃1, x̃2, . . . , x̃k, . . . ⊂ Ĩ
and consider the sequence of functions

yN (x) := max
j=1,2,...,N

{yx̃j
(x)}

According to the preceding paragraph applied inductively, we see that yN (x) solves (1.1). Furthermore,

since as in the proof of Theorem 1.1 the set {yN (x)}N≥1 ⊂ C0(Ĩ) is compact, we may select a subsequence

{yNk
(x)}k≥1 which converges to some y∗(x) (where as usual we restrict x ∈ Ĩ) solving (1.1). But since

yN (x̃j) = b(x̃j) for j ≤ N , we necessarily obtain

y∗(x̃j) = b(x̃j)∀j ≥ 1,

and by density of {x̃j}j≥1 ⊂ Ĩ, we infer that y∗(x) = b(x) for all x ∈ Ĩ.

Exercise: Verify this last step by proving the continuity of the function x0 → b(x0).

The argument for a(x) is similar. �


