
GLOBAL DYNAMICS OF GRADIENT SYSTEMS

1. Basic facts on gradient systems

Let V : Rn −→ R a smooth(C∞) function, and consider the following first order system of ODEs:

(1.1) ẏ(t) = −∇V
(
y(t)

)
, y =


y1
y2
. . .
yn

 , ẏ(t) =
d

dt
y(t),

subject to an initial condition y(t0) = y0 ∈ Rn, say. We use the convention ∇V =


∂y1V
∂y2V
. . .
∂ynV

. Then since

all components of ∇V (y) are locally Lipschitz (why?), we can apply the local Cauchy-Lipschitz theorem to
conclude existence and uniqueness of local solutions for (1.1). Assume that we know a priori that the trajec-
tory y(t) exists for all t ≥ t0. Then a very natural question to ask is:

Large time asymptotics: Can we describe what a typical solution y(t) does for large times t?

Remarkably, the special structure of (1.1) lets one make rather general statements about the asymptotic
behaviour of solutions which exist globally, as long as these solutions stay in a bounded set. This would
be rather hopeless for general first order systems. We observe right away that (1.1) is an example of an
autonomous system, in the sense that the right hand side −∇V (y) is a function of y only, and not involving
the independent variable t. In particular, this implies that if y(t) is a trajectory, then so is any translate
y(t+ a), but of course the initial conditions change under such a time translation.

2. The case of isolated critical points

Recall that a critical point y∗ ∈ Rn for V is a point where ∇V (y∗) = 0. These play an obvious role for the
dynamics of (1.1) since they are automatically fixed points or equilibria, i. e. the constant function y(t) = y∗
is in fact a solution. To visualise the orbits of (1.1), we note the following immediate

Lemma 2.1. Assume that the level set C := {V (y) = c} is such that ∇V (y) 6= 0 for all y ∈ C; in particular,
C is a C1 hypersurface in Rn. Then the trajectories of (1.1) intersect C at right angles.

Proof. This follows since the normal vectors to C in y ∈ C are given by ± ∇V (y)
‖∇V (y)‖ . �

Moreover, we observe that the trajectories move from higher to lower values of V :

Lemma 2.2. If y(t) is a trajectory of (1.1), then t→ V (y(t)) is decreasing.

Proof. This follows from the fact that

(2.1)
d

dt

(
V (y(t))

)
= ẏ(t) · ∇V

(
y(t)

)
= −

∣∣∇V(y(t))
∣∣2,

�

Observe that if y(t), t ≥ t0 is a bounded trajectory of (1.1), then by Bolzano-Weierstrass we can select a
sequence of times {tn}n≥1 with lim tn = +∞ and such that

lim
n→∞

y(tn) = y∗

1
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exists. The following theorem then gives powerful conclusions, especially in case the critical points of V are
isolated:

Theorem 2.3. Assume V is defined and smooth on Rn. Let y∗ ∈ Rn be an ω-limit point or an α-limit point
of a trajectory y(t) of (1.1). This means that either

lim
tn→+∞

y(tn) = y∗

or
lim

tn→−∞
y(tn) = y∗

for some sequence {tn}n≥1 ⊂ R (in particular, it is assumed that y(t) exists for t ≥ 0 in the case of the
ω-limit, and analogously for the α-limit). Then y∗ is a critical point, ∇V (y∗) = 0. If the critical points of V
are isolated, then the trajectory y(t)→ y∗ as t→ ±∞, respectively.

Proof. We consider the case of an ω-limit, the case of an α-limit being treated analogously. The first part of
the theorem is equivalent to y∗ being an equilibrium. To see this, consider the solution to

(2.2) ỹ′ = −∇V (ỹ), ỹ(0) = y∗,

which exists at least locally around t = 0. If ∇V (y∗) 6= 0, we get

(2.3)
d

dt

(
V (ỹ(t))

)
|t=0 = −|∇V(y∗)|2 < 0

We can now deduce a contradiction from this as follows: by assumption

y∗ = lim
n→∞

y(tn),

with tn increasing to +∞. By continuous dependence of solutions of (1.1) on initial data, given δ0 > 0, we
can find δt > 0, δ1 > 0, such that for all y1 ∈ Rn with

|y1 − y∗| < δ1,

the solution y1(t) of

(2.4) y1
′ = −∇V (y1), y1(0) = y1,

exists on [0, δt], and satisfies
max
t∈[0,δt]

|ỹ(t)− y1(t)| < δ0

It then follows from (2.3) that for δt, δ0 small enough, we get

V (y1(δt)) < V (y∗)− δ0
Now pick n0 ∈ N large enough, such that for n ≥ n0, we have

|y(tn)− y∗| < δ1

Then we have
V (y(tn + δt)) < V (y∗)− δ0,

and by monotonicity of V along trajectories, we conclude that

V (y(tm)) < V (y∗)− δ0
for m sufficiently large. But this contradicts

lim
n→∞

V (y(tn) = V (y∗)

in turn a consequence of y∗ = limn→∞ y(tn).

Now we assume in addition that the critical points of V are isolated, i. e. that whenever y∗ is a critical
point, there exists δ > 0 such that Bδ(y∗)\{y∗} contains no critical point. In the situation from above, assume
that we do not have limt→+∞ y(t) = y∗ (in the case of an ω-limit). This means that that there exists (check!)

some δ2 > 0 and a sequence of times {t̃m}m≥1 converging toward +∞ and such that

|y(t̃m)− y∗| = δ2



GLOBAL DYNAMICS OF GRADIENT SYSTEMS 3

We may as well assume by passing to a subsequence that y(t̃m)→ ỹ∗ ∈ Rn, with

|y∗ − ỹ∗| = δ2

By the above, ỹ∗ is a critical point. If we choose δ2 sufficiently small, this contradicts our assumption of y∗
being isolated. �

3. Real analytic V via gradient Lojasiewicz inequality

Two things may be criticised about the preceding theorem: the restriction on isolated critical points is
somewhat limiting. For example, the function

V (x, y) = cos(xy)

does not satisfy this requirement.
Second, the result is completely non-quantitative, in that we cannot say at all how fast a given trajectory is
going to converge to the limiting critical point, in case of isolated critical points.

It turns out that in general, the theorem becomes false if one allows non-isolated critical points. However,
a deep result, whose proof we can only partially give in the context of this course, gives a more powerful
conclusion for real analytic potentials functions V (y). Incidentally, this result also gives a quantitative bound
on how fast the trajectory converges. For the sequel, recall that we say that V is real analytic on Rn, provided
for each y0 admits a r > 0 such that on the ball Br(y0) we can represent V as a convergent power series

V (y) =
∑

α∈Nn
≥0

aα(y − y0)α, yα =

n∏
j=1

y
αj
j .

Then the following deep theorem will be assumed without proof:

Theorem 3.1. (Lojasiewicz, 1960) Let f be a real analytic function on Rn and x∗ ∈ Rn. Then there exist
β ∈ (0, 1), c1,2 > 0, such that for each x ∈ Rn with |x− x∗| < c2, we have∣∣f(x)− f(x∗)

∣∣β ≤ c1∣∣∇f(x)
∣∣.

Now consider the system
ẋ(t) = −∇f(x(t)),

with f real analytic on Rn, and assume that x(t) is a bounded trajectory forward in time (i. e. toward
t = +∞). In particular, there is a sequence tn →∞ such that

x(tn) −→ x∗ ∈ Rn.
Then we have the following

Proposition 3.2. The trajectory x(t) actually converges toward x∗ as t → +∞, and there is C > 0, δ > 0
such that ∣∣x(t)− x∗

∣∣ ≤ Ct−δ.
Proof. We may assume that f(x∗) = 0. Recall from the preceding theorem that for suitable β ∈ (0, 1), c1 >
0, c2 > 0, we have

(3.1)
∣∣f(x)

∣∣β =
∣∣f(x)− f(x∗)

∣∣β ≤ c1∣∣∇f(x)
∣∣,

provided |x− x∗| < c2. Here we may assume β > 1
2 . Then we claim that

(3.2)

∫ ∞
t

|ẋ(t)| ≤ Ct−δ

for suitable δ > 0, C > 0, which easily implies the proposition. To prove (3.2), let c2 be as above, and pick tm
large enough such that

∣∣x(tm)− x∗
∣∣ < c2

2 . We will show that, increasing m if necessary, provided t ≥ tm, we

have
∣∣x(t)− x∗

∣∣ < c2, and moreover (3.2) holds. For this, we may assume that f(x(t)) 6= 0 for all t. In fact,
if not, then since f(x(t)) decreases towards its asymptotic value limtm→+∞ f(x(tm)) = 0, we necessarily have
∇f(x(t∗)) = 0 for some t∗ where f(x(t∗)) = 0, and this means that x(t∗) is an equilibrium, whence the entire
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trajectory would have to be constant, and the conclusion of the proposition is trivial. Next, if x(t) ∈ Bc2(x∗),
then (3.1) implies

d

dt

[
f(x(t))

]
= −

∣∣∇f(x(t))
∣∣2 ≤ −c−21 f(x(t))2β .

This in turn implies, recalling the hypothesis β > 1
2 , that

d

dt

[
f1−2β(x(t))

]
= (1− 2β) · f−2β · d

dt

[
f(x(t))

]
≥ c−21 (2β − 1),

which implies that as long as x(s) ∈ Bc2(x∗), t ≥ s ≥ tm, we have (we have c = c−11 )

[f(x(t))]1−2β ≥ c2(2β − 1)(t− tm) +D,

whence

0 ≤ f(x(t)) ≤ 1

[c2(2β − 1)(t− tm) +D]
1

2β−1

,

where the key is that 1
2β−1 = 1 + ε with ε > 0 since 1

2 < β < 1. The constant D = [f(x(tm))]1−2β , which

can be made arbitrarily large by picking m large enough (why?). We can now show that if we increase m if
necessary and let t ≥ tm, then we have x(t) ∈ Bc2(x∗), and the inequality (3.2) is valid. Indeed, observe that
using the Cauchy-Schwarz inequality we have∫ t

tm

∣∣ẋ(s)
∣∣ ds ≤ ∫ t

tm

∣∣∇f(x(s))
∣∣ ds

=

∫ t

tm

√
− d

ds
[f(x(s))] ds

≤
( ∫ t

tm

− d

ds
[f(x(s))] · (s− tm + 1)1+

ε
2 ds

) 1
2 ·
( ∫ t

tm

(s− tm + 1)−1−
ε
2 ds

) 1
2 .

Here we can use integration by parts for the first integral:∫ t

tm

− d

ds
[f(x(s))] · (s− tm + 1)1+

ε
2 ds

= −f(x(s)) · (s− tm + 1)1+
ε
2

∣∣t
tm

+ (1 +
ε

2
) ·
∫ t

tm

f(x(s)) · (s− tm + 1)
ε
2 ds

< min{ε, 1} · c
2
2

10
,

for D = D(ε, c2) large enough above, as long as x(s) ∈ Bc2(x∗) for tm ≤ s ≤ t. In turn, these imply that∫ t

tm

∣∣ẋ(s)
∣∣ ds < c2

2
,

say, as long as x(s) ∈ Bc2(x∗), tm ≤ s ≤ t A simple continuity argument1 then implies that x(t) ∈ Bc2(x∗) for
all t ≥ tm, and then the inequality (3.2) follows with δ = ε

4 , provided t ≥ tm, and then with suitably modified
C for all t ≥ 0. Indeed, we can bound for t ≥ tm (with m as in the preceding sufficiently large)∣∣x(t)− x∗

∣∣ ≤ ∫ ∞
t

∣∣ẋ(s)
∣∣ ds

≤
( ∫ ∞

t

− d

ds
[f(x(s))] · (s− tm + 1)1+

ε
2 ds

) 1
2 ·
( ∫ ∞

t

(s− tm + 1)−1−
ε
2 ds

) 1
2

≤ C1 · t−
ε
4

for suitable C1 = C1(tm), while we also have the bound∣∣x(t)− x∗
∣∣ ≤ C2 · t−

ε
4 , t ∈ [0, tm]

1Assume that there is a first time t ≥ tmsuch that x(t) /∈ Bc2 (x∗), but x(s) ∈ Bc2 (x∗) for tm ≤ s < t, and derive a

contradiction from this.
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for suitable C2 = C2(tm) by continuity. We can then set C = max{C1, C2}.
�


