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ABSTRACT   

Due to its symmetry properties, second-harmonic generation in plasmonic nanostructures enables the observation of 
even-parity modes that couple weakly to the far field. Consequentially, those modes radiate less and thus have a longer 
lifetime. Using a full-wave numerical method, we study the linear and second harmonic dynamical responses of a silver 
nanorod under plane-wave femtosecond pulse illumination. Depending on the spectral position and duration of the pulse, 
the decaying field of the different modes can be separated, and the free oscillations of each mode are well fitted by a 
damped harmonic oscillator model, both in the linear and nonlinear regimes. Additionally, interference effects between 
different modes excited at the second harmonic are observed. 
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1. INTRODUCTION  
The coherent oscillation of free electrons in metals is known to enable a strong localization of the electromagnetic field.1-

3 Those plasmonic resonances can be spectrally tuned by changing the shape and geometry of the nanoparticle(s) and 
exhibit a strong dependence on the material and surrounding medium properties.4, 5 The large concentration of surface 
charges around metallic nanoparticles allows reaching extreme field intensities that can then enhance nonlinear 
processes. One of the many applications of such a field enhancement is the generation of harmonics. Indeed, nonlinear 
mechanisms depend on higher power of the intensity and thus benefit from the large intensity found on plasmonic 
nanoparticles. Among all nonlinear processes, second harmonic (SH) generation (SHG) has received particular attention 
from the plasmonic community.6, 7 The importance of the eigenmode structure of nanoparticles for an efficient SHG has 
been put forward with the design of double resonant nanostructures.8-12 Additionally, eigenmode-oriented studies of the 
SHG have also been conducted in order to reveal their influence at both the fundamental and nonlinear stages.13-15 
Nevertheless, the dynamics of the SHG, especially the response of nanostructures to femtosecond pulses has not yet been 
addressed in detail, even though this is of great importance for the coherent control of SH light and for temporal 
measurements techniques relying on nonlinear processes. 

In this paper we extend the study conducted in ref [16] to a more detailed analysis of the interference between dipole and 
quadrupole at the second harmonic wavelength for short pulse illumination. We show that the SH field can be observed 
to behave like a damped harmonic oscillator for specific pulse durations and widths, and reveal the dynamical 
interference between two, or more, eigenmodes. 

 

2. THEORY 
The simulations are made using a full-wave method in the frequency domain, namely the surface integral equation 
method (SIE).17, 18 One considers only the surface of the nanoparticle that is discretized into triangular elements and, by 
enforcing the boundary conditions of the field, one can solve for equivalent currents on the surface. The time harmonic 
dependence of the field is of the form , with = √−1,  the angular frequency in rad·s-1 and  the time in s. 
Throughout the manuscript we use electronvolts (eV) units to express , i.e. = ℎ /  with  the frequency in Hz,  
the elementary charge, and ℎ Planck’s constant.  
 
To build a signal with a finite duration, more than one frequency is needed. Thus, the second order nonlinear process will 
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Table 1.  Eigenfrequencies, lifetimes and quality factors Q= ωr/|ωi| 

 ωr (eV) ωi (eV) τ (fs) Q 
Long. dipole  1.74 -0.0936 7.03 18.5 

Long. quadrupole 2.80 -0.0244 27.0 115 

Trans. quadrupole 3.27 -0.0418 15.7 78.3 

Trans. dipole 3.38 -0.168 3.93 20.1 

 

3.2 Pulse excitation, nonlinear response  

We now consider the second harmonic response of the nanorod to a short pulse centered at half the resonance of the 
longitudinal quadrupole, i.e. 1.4 eV. The Ey field is probed at three points in the far-field at a distance of 10μm, namely 
at ±45° and at 0° (y=0, see Fig. 3(a)). Two different pulse widths are considered: 0.14 and 0.21 eV, respectively 
corresponding to FWHM of 11 and 7 fs. We first study the longer pulse, i.e. the spectrally narrower one. The field in the 
±45° directions shows two distinct regimes, Fig. 3(b). In the first part t < 55fs, interferences are observed. As already 
reported in the literature,28, 29 this effect is due to the interference between the longitudinal quadrupole and the transverse 
dipolar modes. Here the interference is constructive in the -45° direction (green curve) and destructive in the +45° 
direction (red curve). Let us remark however that this will depend on the relative spectral position of both modes as well 
as the pulse central frequency. To prove that the above-mentioned mechanism is at play here, we compute the sum of the 
fields at the ±45° points. Since they should be out of phase without any interference, this sum reveals the disturbance and 
is plotted with black markers on the bottom part. We now plot the field in the 0° direction (blue curve) as it should only 
be linked to the dipolar resonance since the quadrupole does not radiate in that direction. It is observed that the dipolar 
trace indeed matches the sum of the field in the ±45° direction, confirming the interference effect between the two 
modes. Let us note that the almost perfect match between the blue curve and black symbol is fortuitous and is the result 
of the relative amplitude of the dipolar and quadrupolar radiation patterns in the ±45° directions as well as the intrinsic 
amplitude of each mode. We also note that the field at +45° presents a beating-like pattern during the interference. 

For times larger than ~55 fs, the interference vanishes, Fig. 3(b). This is because the transverse dipolar mode is no longer 
oscillating. Indeed, its lifetime, 3.93 fs, is shorter than the pulse width, 11 fs, so that it dies out with the driving pulse. On 
the other hand, the lifetime of the longitudinal quadrupole is comparatively longer, 27 fs, and one can indeed observe a 
free oscillation of the fields in the ±45° directions. Furthermore, with the parameters of the longitudinal quadrupole 
given in Table 1, we fit Eq. (3) to the green curve, see black curve in inset in Fig. 3(b). It is apparent that the match 
between the damped harmonic oscillator model and the free oscillation and the field obtained with full wave computation 
is very good. 

If we now look at the case of a shorter pulse excitation, Fig. 3(c), we observe a more complex interference pattern. This 
is because the pulse is spectrally broad enough to excite higher order modes that have dipolar-like radiation pattern and 
symmetry. We thus observe a beating in the dipolar response due to the interference between (at least two) dipolar 
modes. However, the sum of the fields in the +45° directions still matches the dipolar trace, showing that the interference 
effect observed in the previous case also occurs when more than two modes are excited at the second harmonic 
wavelength. We can also note that the higher order dipolar-like mode has a lifetime large enough to create interferences 
well after the excitation pulse has vanished. 
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