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Chapter 22 
Theoretical Future: Vision 2030 

Amir Boag, Vadim A. Markel, Olivier J. F. Martin, M. Pinar Mengüç, 
and Kevin Vynck 

A round table discussion on the topic “Theoretical future—Vision 2030” was 
organized during the Weiglhofer Symposium on Electromagnetic Theory. The panel 
included Amir Boag from Tel Aviv University, Vadim A. Markel from the University 
of Pennsylvania, M. Pinar Mengüç from Ozyegin University, and Kevin Vynck 
from the University of Lyon, and it was chaired by Olivier J.F. Martin from the 
Swiss Federal Institute of Technology in Lausanne (EPFL). All participants to the 
symposium contributed actively to the discussion (Fig. 22.1). 

With their opening statements, the panelists emphasized the key role that 
Maxwell’s equations are playing in our society today. Electromagnetism is the 
driver behind so many indispensable technologies: from automotive to imaging, 
from telecommunications to remote sensing, from electronics to energy harvesting, 
with application frequencies that cover at least fifteen orders of magnitude. 

Industrial cycles are becoming shorter as the time between an initial idea and 
its application in a product is shrinking. This calls for novel design approaches, 
possibly beginning from materials and their functions, then their characterization 
and integration into a complete system—metamaterials represent a good example 
where this approach is quite successful. 
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Fig. 22.1 The panelists (from left to right): A. Boag, V. A. Markel, M.P. Mengüç, K. Vynck, and 
O.J.F. Martin (photo P.B. Monk) 

The rapid acceleration that we have witnessed over the last couple of decades 
in the utilization of Maxwell’s equations also brings about novel societal respon-
sibilities. With the Internet of Things, the number of radiators in a room is 
increasing at a rapid pace and one may wonder whether all that connectivity is 
really needed, a societal debate that extends much beyond electromagnetics. The 
influence of electromagnetic fields on humans and animals is also a topic that 
requires multifaceted competences and should be investigated considering not only 
possible adverse effects but also potential electricity-enabled medical treatments. 

Many technologies based on electromagnetics are quite energy-greedy and we 
should endeavor that our research does not hurt the environment and be always 
aware of its impact, including the gray energy it generates. At the same time, it was 
eloquently explained that electromagnetics also bears the cure against some of its 
excesses and research topics like radiative heat transfer, thermal radiation, or passive 
cooling fall perfectly within the realm of Maxwell’s equations. Overall, inspiration 
from the natural world can help us address some of those challenges. 

Although computational electromagnetics is a very mature field of research, there 
are still quite a few challenges that cannot be solved with commercial programs. 
These include complex, multiscale, three-dimensional geometries, or systems with 
internal resonances, which remain difficult to handle. Large disordered systems
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as found in nature are also beyond the current state of the art. Sometimes, the 
numerical approaches are excessive in what they produce and it would be efficient 
to limit calculations to what is really needed, e.g., the scattering cross section or the 
optical force acting on an object. Additional research efforts should be invested 
into direct solvers and irregular grids. Multiphysics approaches are becoming 
increasingly important and so are techniques that can bridge the gap between 
classical electromagnetics and quantum systems, although they are still in their 
infancy. Machine learning has certainly emerged as a very popular approach, and 
one should attempt to seamlessly integrate Maxwell’s equations into those new 
techniques, rather than applying them by brute force. Some participants emphasized 
also that some mathematical tools, like the complete characterization of an algebraic 
variety, are essential to gain insights in the response of complex electromagnetic 
systems, like three-dimensional photonic crystals. 

The panel was unanimous to note that the widespread availability of commercial 
and free software for the solution of Maxwell’s equations is a mixed blessing. On 
the one side, it supports the central position of electromagnetics in many modern 
technologies and allows facile simulations to illustrate many physical situations. On 
the other side, there are numerous pitfalls in the utilization of these commercial and 
free software it seems that a significant portion of the user community is satisfied 
with a colorful image of the field distribution and rarely question the validity of their 
numerical results or carefully check the convergence of their simulation. 

This observation echoes a topic that emerged strongly in the course of the 
discussion: how to educate students in electromagnetics? The panel noted that good 
students interested in that subject are difficult to find. Some panelists regretted that 
this field of study had shifted from the physics departments to electrical engineering 
departments. There was also a consensus that electromagnetics is taught in a rather 
old-fashioned way, with “modern” textbooks merely duplicating previous works. 

All participants to the symposium shared a vivid enthusiasm for Maxwell’s 
equations and the amazing construction he established over 150 years ago. There 
was a general feeling that this enthusiasm should be better conveyed to students 
and used to tease their intellectual curiosity and inspire them. Some disruptive 
approaches to diversify teaching were also proposed, like replacing the seemingly 
complicated vector calculus with matrices and numerical calculations or using 
graphical examples to visualize abstract concepts: showing, for example, to the 
students what the nabla operator does to the electric field. 

The ubiquity of Maxwell’s equations in today’s technology suggests that Centers 
might be more appropriate for electromagnetics research than Departments. This 
proposition lends itself well to more inter- and multi-disciplinary approaches, where 
teams of students from different backgrounds work together on a specific project. 
There was however a call for caution with interdisciplinary projects introduced 
too early in the curriculum, which boils down to the least common multiple of 
available competences. It is essential that students master their own discipline well, 
before contributing meaningfully to a complex, multifaceted project. Yet, learning 
to communicate, collaborate, and work in a team are also key assets that need to be 
practiced.



552 A. Boag et al.

Although not specific to electromagnetics, it was noted that scientific integrity 
and awareness of the societal impact of technology should be prominent throughout 
the entire curriculum. Finally, the participants wished for a better gender balance in 
hard sciences at large and electromagnetics in particular.
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