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Chapter 21 
Mind the Gap Between Theory 
and Experiment 

Andrei Kiselev, Jeonghyeon Kim, and Olivier J. F. Martin 

21.1 Introduction 

We did not have the pleasure to meet Werner S. Weiglhofer and only know of him 
through his scientific publications. In spite of his too short career, they are extremely 
numerous, diverse and impactful. Following the Web of Science categories, one 
notices that these contributions do not only cover optics and electromagnetics but 
also reach out to applied physics, materials sciences and—of course—mathematics. 
They are very well cited: his works on demystified negative index of refraction 
[1] and that on light-propagation in helicoidal bianisotropic media [2], at the 
top of his list of citations. Working at the Department of Mathematics of the 
University of Glasgow, it is not surprising that Werner’s publications have a strong 
theoretical flavour and have inspired many theoretical works. Yet, analysing their 
citations further indicates that these theoretical developments inspired numerous 
experimental projects. As an example, among the citations of his work on light-
propagation in helicoidal bianisotropic media [2], a third of the citing articles 
report experiments. This illustrates how well Werner succeeded in bridging the gap 
between theory and experiments. Obviously, theory is very important and progress 
within the realm of theoretical physics is often fascinating in itself. Evidently, new 
theories are often the driver behind new experimental work. This chapter, however, 
focuses on the inverse process, where experimental work requires numerical support 
as close as possible to the experimental situation. After briefly presenting the 
numerical technique we have developed for over a decade to solve Maxwell’s 
equations, we discuss three different experimental situations where we attempted 
to model the real experiment as closely as possible. 
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21.2 Computational Electromagnetics 

At the onset of studying a given experimental situation lies the fundamental question 
of the choice of the most appropriate numerical method. It is fair to say that 
there is not one single numerical technique that is fit for all situations, and even 
for the narrow field of plasmonics, which is the focus of our work, numerous 
approaches exist as illustrated in a recent review article [3]. Furthermore, each 
numerical method can be put to good use as long as it is utilized wisely and carefully. 
Especially, sufficient efforts must be undertaken to characterize the algorithm 
beforehand, to make sure that it will converge well for the problem at hand and 
is free from spurious behaviours. This task is especially thankless, but of paramount 
importance if the numerical results are to be trusted. Note that it does not only 
apply to home-developed numerical codes but should be equally undertaken with 
commercial packages that should never be trusted blindly, even if they produce 
beautiful and colourful images. 

To assess the accuracy of a numerical technique and obtain a metric to quantify 
it, one usually resorts to canonical problems. Unfortunately, there are essentially 
only two such problems for which a reference solution exists (the quasi-analytical 
Mie solution): the scattering by a sphere for three-dimensional (3D) problems or 
by a cylinder for two-dimensional (2D) geometries [4]. Figure 21.1 illustrates this 
approach for a 2D solution obtained with a volumetric Green’s tensor approach 
[5]. In this case, two different incident polarizations must be considered, with 
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Fig. 21.1 Measuring the numerical solution accuracy for light scattering by an infinite cylinder 
in vacuum illuminated by a plane wave normal to the cylinder. Two polarizations are considered: 
transverse electric (TE) with the electric field normal to the cylinder axis and transverse magnetic 
(TM) with the electric field along the cylinder axis. (a) Comparison between the numerical solution 
and the reference Mie solution for a dielectric cylinder with relative permittivity .ε = 4 and a size 
parameter .x = π

√
εd/λ = 10.43, where  d is the cylinder diameter, . ε its relative permittivity and 

. λ the wavelength in vacuum. (b) Relative error between the Mie and numerical solutions (defined 
as the square of the difference between the numerical and Mie far-field amplitudes, normalized 
to the square of the analytical amplitude) as a function of the number of discretized elements for 
two different materials . ε, for TE (solid lines) and TM (dashed lines) polarizations. Adapted from 
Ref. [5] with permission, copyright IEEE 2000
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the electric field either perpendicular to the cylinder axis (transverse electric or 
TE field) or parallel to the cylinder axis (transverse magnetic or TM field). The 
differential cross section can be computed as a function of the scattering angle and 
compared with the quasi-analytical Mie solution, Fig. 21.1a. This panel indicates 
that many features exist in that response, which need to be reproduced accurately 
with the numerical method. A more quantitative metric is obtained by integrating the 
difference between this cross section and the Mie solution over all scattering angles 
and repeating the calculations with an increasing number of discretized elements, 
Fig. 21.1b. In principle, the error should decrease as the number of elements 
increases. However, this behaviour is far frommonotonous since it includes different 
facets of the numerical problem: on the one hand, a finer mesh approximates the 
scatterer better and should provide a more accurate solution, and on the other hand, 
it requires a larger numerical matrix to be solved, which is more difficult, especially 
when the matrix condition number increases, as is the case here [6, 7]. Consequently, 
plateaus appear in the convergence curve, Fig. 21.1b. We also notice that the 
polarization influences the solution accuracy, reminiscent that in electromagnetics 
all field components do not behave in the same way: some are continuous across 
materials’ boundaries, and others are not [8]. 

Experimental situations are usually much more complicated than a sphere or a 
cylinder, and we will show in Sect. 21.3.2 that it is possible to use reciprocity to 
assess the accuracy of numerical results produced for complex geometries. 

In this chapter, we focus on the surface integral equation (SIE) method for 
the numerical solution of Maxwell’s equations. An interesting feature of such a 
formulation is that the boundary conditions at the edge of the computation window 
are included in the equations and need not be taken care of by using ad hoc 
prescriptions, such as absorbing boundary conditions or perfectly matched layers 
[9]. Indeed, these boundary conditions are already included in the kernel of the 
integral equation and can take different forms, like infinite homogeneous space [10], 
surfaces or stratified media [11, 12], or waveguide cavities [13]. There is of course 
a price to pay for this: except for infinite homogeneous space where the kernel is 
known analytically [10], it must be evaluated numerically, usually by resorting to 
plane waves or eigenmode expansions [11, 14]. 

The SIE is constructed from the combination of an equation for the electric 
field and one for the magnetic field; different weighted combinations can be used 
here [15]. The volume integral form of Maxwell’s equations is transformed into a 
surface equation using Gauss’ theorem, and the solution is computed from unknown 
electric and magnetic currents defined only on the surface of the scatterer [16]. This 
is very advantageous since only that surface needs to be discretized; on the other 
hand, a limitation of this approach is that the resulting matrix is dense since each 
mesh is connected to all the other meshes in the system, different, e.g., from the 
finite difference time domain method, where only nearest neighbours are connected 
[17]. The resulting system of linear equations is constructed through a Galerkin 
procedure, where Rao–Wilton–Glisson functions are used as both basis and test 
functions [18]. The accuracy of the method strongly depends on the order used for 
the quadrature in the Galerkin scheme [19]. Once the surface currents are known,
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different observables can be computed, from the near-field to the different cross 
sections [20] or even the force and torque produced by the incident light on the 
nanostructure [21, 22]. 

21.3 Approaching Experimental Situations 

Having settled for the numerical technique, we wish to address the question of 
modelling the geometry of a real experiment as accurately as possible and will 
do that in the context of three different plasmonic systems. This field of research 
studies the interaction of light with coinage metals, like gold, silver, aluminium or 
heavily doped semiconductors [23]. When light impinges on a nanostructure made 
from such a metal, it resonantly excites the free electrons in the metal, producing 
a very strong near-field at the vicinity of the nanostructure [24, 25]. It is quite 
remarkable that nanostructures much smaller than the wavelength can exhibit such 
strong resonances, the reason being the localisation of the free charges in a specific 
pattern associated with each optical resonance [26, 27]. 

21.3.1 Fano-Resonant Systems 

In principle, any resonant system has an optical response with a Lorentzian shape 
[4]. This is also true for a plasmonic nanostructure, as long as only one single 
resonance is excited like in a small particle or a dipole antenna [28]. On the other 
hand, as soon as more than one resonance is present, the lineshape can become 
very complicated with several different peaks. A prominent family of such irregular 
responses is the so-called Fano lineshape, following the name of Ugo Fano who 
discovered them while interpreting atomic spectroscopy experiments [29]. In the 
context of plasmonics, Fano resonances occur when two modes are present in 
the system, often a bright mode (a mode that radiates into the near-field, like 
a dipole) and a dark mode (a mode that does not radiate into the far-field, like 
a quadrupole) [30]. In plasmonics, the intrinsic losses associated with the metal 
make the resonances relatively broad [31], such that several modes can overlap 
and interact, even when their exact resonance frequencies are different. The bright 
mode is excited by the incoming excitation and produces some near-field that can 
in turn excite the dark mode [32]. The latter will also produce a near-field that 
affects the bright mode. Depending whether both responses are in- or out-of-phase 
(i.e., depending on the excitation wavelength), they will interfere constructively or 
destructively, producing the asymmetric lineshape. 

The interest for plasmonic Fano-resonant systems lies in the fact that they exhibit 
very narrow spectral features, in spite of the significant losses inherent to plasmonic 
metals. This is useful for sensing, where the quality factor (i.e., the resonance width)
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Fig. 21.2 Optical trapping with an hexamer. (a) Six gold nanostructures are deposited on a 
substrate and produce a strong optical field under linear polarized illumination, which can trap 
a gold nanosphere. The mesh for an ideal structure is shown. (b) (from left to right) Realization of 
a realistic mesh based on an SEM image of an effectively realized nanostructure (scalebar 100 nm), 
which outline is determined using the Canny edge detector from the Scikit-image Python package. 
The realistic mesh is built in Blender from this outline by inspection and comparison with the 
SEM image. (c) Comparison of the scattering cross sections for the ideal and realistic meshes 
as a function of the wavelength in vacuum . λ. (d) Multipolar decomposition of the scattering 
cross section obtained from the realistic mesh into Cartesian multipoles: electric/magnetic dipoles 
(ED/MD), electric/magnetic quadrupoles (EQ/MQ), and electric/magnetic octupoles (EO/MO) 

determines the sensitivity and several experiments have been performed along those 
lines [33–40]. 

Here, we are rather interested in the very strong optical near-field generated by 
Fano-resonant nanostructure, as illustrated in Fig. 21.2a. Six gold nanostructures 
are positioned on a circular ring forming a hexamer and illuminated with linear 
polarized light. These structures produce a strong near-field gradient that will exert 
a force on a nearby gold sphere (the experiment is performed in water), which 
will become trapped at the centre of the structure. Once the sphere is trapped, 
the structure becomes a heptamer and its spectrum changes. In order to guide 
this experiment, it is important to have an accurate description of its spectral 
response, especially to choose the best excitation wavelength. To this end, the 
experimentally realized hexamer is used to build a finite element mesh for the SIE 
calculations, Fig. 21.2b: first, the edge of the structure is obtained from the scanning 
electron microscope (SEM) image using the edge detector in the Scikit-image 
Python package with a standard deviation .σ = 7 pixels, which corresponds to the
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spatial extent for that edge detection [41]. This 2D outline is imported into Blender 
version 3.2 [42] and extruded to form a 3D object, whose sharp edges are smoothed 
using the bevel function, and sculpted until it mimics the shape inferred from the 
SEM image. A more accurate approach would consist in using tomography in an 
electron microscope [43], e.g., high-angle annular dark-field scanning transmission 
electron microscopy, which provides amazing 3D reconstructions of plasmonic 
nanostructures [44, 45]. 

Inspecting the scattering cross sections (SCSs, which correspond to the power 
flow scattered by the structure in the far-field) for the ideal and realistic meshes 
in Fig. 21.2c, we observe some differences in the Fano lineshapes, especially the 
magnitudes of the different peaks. Based on the realistic meshes, the SCS can be 
decomposed into different Cartesian multipoles [46]. Interestingly, although the 
electric dipole dominates the response of the system, we also observe a rather 
important magnetic quadrupole around .λ = 700 nm, Fig. 21.2d. The Fano resonance 
proceeds from the interaction between the electric dipole (bright mode) and the 
magnetic quadrupole (dark mode). 

21.3.2 Near-Field of Plasmonic Antennae 

The near-field distribution at the vicinity of plasmonic nanostructures is the driver 
for all interactions with molecular or atomic systems, such as fluorescence [47–51] 
or surface enhanced Raman spectroscopy (SERS) [52–54]. Computing an absolute 
value of this field enhancement is an extremely difficult task, which certainly still 
deserves important research developments. In this section, we wish to show that 
the exact nanostructure geometry can play a significant role for the computed near-
field. To this end, we consider a dipole antenna made from gold with two 100 nm 
long arms separated with a 25 nm gap. It is possible to fabricate such a nanostructure 
fairly accurately with a high-resolution electron beam system and ion etching [55]. 
However, it can happen that the produced nanostructure resembles more a pair of 
potatoes than two perfect parallelepipeds, as shown in the SEM image in Fig. 21.3a. 
Using a similar approach as that described in Sect. 21.3.1, it is possible to infer 
from the SEM image a finite element mesh for that structure and use it to compute 
the optical response of the realistic particle. Interestingly, in the far-field, both the 
perfect rectangular and the realistic one have the same spectral response with a 
resonance at .λ = 630 nm and a modest magnitude difference. Considering both 
antennae as electromagnetic objects and drawing the electric field lines produce 
also quite similar impressions, with maybe slightly denser field lines for the real 
antenna, Fig. 21.3c. 

A very different behaviour is observed in the near-field of both antennae, as 
shown in Fig. 21.4, where we compute the near-field intensity enhancement around 
the left arm of each antenna at the resonance wavelength .λ = 630 nm. Let us first 
focus on the field at the close vicinity of the metal (2 nm), unwrapped like for a 
geography map. The incident field has unit intensity and the intensity is enhanced
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Fig. 21.3 Gold plasmonic dipole antenna built from two 100 nm long gold nanostructures (. 40 ×
40 nm2 cross section) with a 25 nm gap. (a) (left to right) Mesh used for the ideal rectangular 
structure, SEM image of an effectively realized structure and mesh used for the realistic structure. 
(b) Scattering cross sections computed for the ideal and realistic antennae. (c) Electric field 
lines derived from the electromagnetic models. Panels (a) and (b) adapted from Ref. [56] with 
permission, copyright American Chemical Society 2011 

by three orders of magnitude for both antennae. The near-field distribution is very 
different for each geometry, with most of the enhancement at the vicinity of the 
corners for the ideal structure and a broader and smoother field distribution for the 
realistic structure. Using the ideal geometry to compute how molecules would be 
driven by that antenna produces very different results compared to those obtained 
with the realistic structure. Especially, those “hot-spots” at the antenna corners are 
very unlikely to appear in an experiment, where fabricated metal nanostructures 
always exhibit significant roughness. We will come back to this issue of roughness 
in Sect. 21.3.3 and show that its importance strongly depends on the physical 
situation at hand. At larger distances from the surface, 10 nm in Fig. 21.4, both 
field distributions become much more similar, without any noticeable “hot-spots” 
near the rectangular corners. The resemblance of a numerical model with the 
experimental reality is therefore especially important in the ultimate near-field, 
the region where, for example, molecules interacting with the structure, would be 
located. Sadly, many simple numerical models used to study near-field interactions 
with plasmonic nanostructures rely on ideal, parallelepiped structures. 

The previous observations on the near-field distribution at the vicinity of a 
plasmonic nanostructure prompt us to make a short discussion on reciprocity and 
its use to validate numerical models. Reciprocity is a complicated concept that can 
be easily misused, and we refer the interested reader to the excellent review article
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Fig. 21.4 Comparison of the near-field intensity enhancement computed around the ideal rect-
angular antenna and the real one deduced from the SEM image. The equirectangular projection 
coordinate system used to map the field intensity is shown at the top for the real antenna. The 
intensity maps are shown for the left arm of each antenna (rectangular or real) at two different 
separation distances from the metal: 2 nm and 10 nm. Adapted from Ref. [56] with permission, 
copyright American Chemical Society 2011 

by Caloz et al. where it is discussed in detail [57]. Briefly, in an optical experiment 
with a source and a detector, reciprocity requires that the system responds in a 
similar way when the source and the detector are exchanged. This can be illustrated 
with the plasmonic antennas considered in this section. Figure 21.5 shows the 
field enhancement for the ideal dipole antenna (top row) and the realistic antenna 
(bottom row). The solid lines show the enhancement of the light radiated by a 
dipole source detected in the far-field at (x;y;z) = (0;0;106 nm). Three different 
dipole locations indicated by the black dots are considered, as well as two different 
dipole orientations: parallel to the antenna axis (red lines) and normal to the antenna 
axis (green lines). When the dipole is in the gap of the antenna, the intensity 
enhancement resembles the scattering cross sections shown in Fig. 21.3b, with again 
a slightly larger enhancement for the realistic antenna. This coupling between the 
dipole and the antenna strongly depends on the dipole orientation, and no field 
enhancement is observed when the dipole is normal to the antenna axis (green lines). 
As soon as the dipole is displaced away from the antenna centre, the enhancement 
decreases significantly (note the different vertical axis ranges for the second and 
third columns in Fig. 21.5). In this case, the ideal antenna still exhibits a Lorentzian 
response with a single spectral feature, indicating that this geometry supports only 
one electric dipole resonance. This is not the case for the realistic geometry, where 
several Cartesian multipoles interact to produce a more complicated response. These 
data indicate that molecules spin-coated on a dipole antenna will experience very 
different radiation enhancements, depending on their location on the nanostructure, 
with the molecules located close to the gap benefiting most from that enhancement.
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Fig. 21.5 Solid lines show the enhancement of the intensity radiated to the far-field by a dipole 
source in the proximity of an ideal rectangular (top row) or realistic (bottom row) nanoantenna. 
The source is located in the x-z-plane (the same axes as in Fig. 21.3 as indicated by the dots in 
the insets, oriented in x-direction along the antenna axis (red curves) or in z-direction normal 
to the antenna axis (green curves), while far-field detection is at (x;y;z)=(0;0;106 nm) and in x-
polarization. Symbols represent the reverse process with source and detection points exchanged: 
the x-polarized source is located at (x;y;z) = (0;0;106 nm) and the detection is in the near-field 
in x-polarization (crosses) or z-polarization (circles). Adapted from Ref. [56] with permission, 
copyright American Chemical Society 2011 

The crosses and dots shown in Fig. 21.5 are the results of separate calculations 
where a dipolar source was used in the far-field at the location (x;y;z) = (0;0;106 nm) 
and the field intensity was computed near the antenna at the location marked with 
the black dot. It should be noted that reciprocity applies to the field components, not 
the total intensity. Hence, for the first calculations with the dipolar source close to 
the antenna, only the x-polarization of the far-field was computed; for the second 
calculations, the dipole located in the far-field was oriented in the same x-direction, 
while the intensity of only the x-component (respectively, z-component) of the 
electric field at the black dot was computed for the red (respectively, green) lines. 
Altogether, this procedure corresponds to exchanging the source and the detector, 
and the perfect agreement between the lines and the symbols in Fig. 21.5 indicates 
that those numerical results fulfil reciprocity. 

This provides a useful way of checking the accuracy of numerical results beyond 
the comparison with a reference solution on a very simple, canonical geometry 
discussed in Sect. 21.2. This check is very easy to perform when the numerical 
method at hand can handle infinite geometries, as is the case for algorithms based 
on the integral form of Maxwell’s equations. 

To conclude this section, let us note that in Fig. 21.4 we dared to compute the 
electromagnetic field at a very short distance from the metal: 2 nm. Whether a pure 
classical electromagnetic approach is sufficient to do so is of course an intricate 
question. There appears however to be a consensus that down to that distance, 
it is still reasonable to do so: for shorter distances, one should resort to more
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sophisticated models, beginning first by including non-local effects [58], while 
even shorter distances require more complicated approaches such as time-dependent 
density functional theories [59] or advanced quantum (or quantum-corrected) 
models [60–62]. 

21.3.3 Hybrid Nanostructures 

So far, we have considered the strong optical resonances that can be excited in 
plasmonic metals and are associated with their very high density of free electrons 
[23]. Surprisingly, strong resonances can also be observed in high refractive index 
dielectric nanostructures by virtue of so-called Mie resonances [63]. In short, one 
can say that plasmonic nanostructures have essentially a fundamental resonance 
with an electric dipolar character, while dielectric structures have a magnetic dipolar 
fundamental resonance. An interesting question is whether combining these two 
materials can open up a new field of investigations where electric and magnetic 
resonances are combined? Such hybrid nanostructures are beginning to emerge, 
with only a few experimental demonstrations so far [64, 65], including one from our 
group [66]. Theoretical studies have demonstrated that indeed coupling metals and 
dielectrics produce a rich spectrum with some very narrow features like anapoles 
[67]. 

Figure 21.6a shows the geometry for such a hybrid nanostructure we realized for 
sensing applications [66]. Nominally, it is composed of a 220 nm thick Si cylinder 
base with a 60 nm thick Al disc cap, separated with a 75 nm .SiO2 spacer; the overall 
structure has a diameter of 470 nm. The dielectric spacer thickness can be adjusted 
to control the coupling between the modes in the dielectric Si cylinder and those in 
the Al plasmonic disc, providing control on the spectral response of the system, as 
studied in detail in Ref. [68] and illustrated in the calculations shown in Fig. 21.6c. 
Note that due to absorption of Si, this structure’s response is mainly in the near 
infrared range of the optical spectrum. Note also that the fundamental mode of the 
structure, around .λ = 1600 nm, is magnetic dipolar. 

The effectively fabricated nanostructure realized by reactive ion etching, shown 
in Fig. 21.6b, has dimensions that are quite close to the ideal structure with a 239 nm 
thick Si cylinder, a 84 nm spacer and a 57 nm thick Al disc. Their utilization for 
bulk refractive index sensing was tested experimentally, yielding a rather modest 
sensitivity of 208 nm/RIU [66], about half the best value obtained for bulk refractive 
index sensing with pure plasmonic nanostructures. The reason for that disappointing 
sensitivity can be well understood from numerical simulations. It is known that the 
spatial overlap between the near-field produced by the sensing nanostructure and 
the analyte is key for the sensitivity [69–71]. Unfortunately, the field distribution 
computed for the ideal structure, shown in Fig. 21.7a, indicates that most of the 
electric field remains within the dielectric spacer. This observation prompted the 
idea to etch away some of this spacer, sufficiently to expel some of the electric field 
into the background, but not too much to compromise the nanostructure stability.
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Fig. 21.6 (a) Hybrid nanostructure built from a 220 nm thick Si cylinder with a 60 nm thick 
Al disc, separated with a 75 nm thick .SiO2 spacer. (b) SEM image of the effectively fabricated 
nanostructure. (c) Falsed colours SEM image of nanostructures with recessed .SiO2 spacer to 
improve the sensitivity. (d) Cartesian multipoles decomposition of the scattering cross section 
(SCS) in electric/magnetic dipoles (ED/MD) and electric/magnetic quadrupoles (EQ/MQ) 

This can be performed with an additional wet etch step with hydrofluoric acid [68]. 
The resulting nanostructures are shown with false colours SEM images in Fig. 21.7c 
with the Si cylinder in blue, the recessed .SiO2 spacer in green and the Al disc in 
grey. Figure 21.7b,c indicates that this treatment increases indeed the electric field 
in the background. Experimentally, the sensitivity increased from 208 nm/RIE to 
245 nm/RIE [68]. 

Further insights into this modest experimental improvement are provided in 
Fig. 21.8a, which shows the maximum of the near-field enhancement computed in 
the background for the different distributions shown in Fig. 21.7. First, we notice 
that the strongest enhancement is obtained for only lightly etched spacers and 
located close to the sharp metal edge in the metal (see Fig. 21.7b); we are again 
facing an issue related to sharp unrealistic geometrical features as in Sect. 21.3.2. 
Furthermore, there is a wavelength shift for the main resonance as the spacer 
diameter decreases, Fig. 21.8a. In that context, it is interesting to notice that the 
second resonance around .λ = 1100 nm is quite prominent for the more realistic 
nanostructures; to the extent that the field enhancement is almost as strong as that 
provided by the fundamental resonance at .λ = 1600 nm. This observation has 
important implications for the experiment, and it would have been unnoticed if more 
realistic nanostructures had not been simulated. Figure 21.8b indicates that, on the
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Fig. 21.7 The electric field amplitude enhancement colourmaps for different hybrid nanostruc-
tures, together with the vector electric field distribution. (a) Complete ideal structure and (b) 
ideal structure with .SiO2 spacer reduced to 90%, (c) respectively. Structures with the .SiO2 spacer 
reduced to 80% and a rough cap Al disc obtained by Gaussian noise with maximum amplitude (d) 
8 nm  and  (f) 60 nm. (e) Sketch of the model computed in panel (f) with a recessed spacer and a 
rough Al surface. All the structures are illuminated from the bottom as indicated in panel (a) and  
immersed in air 

other hand, the scattering cross section of the nanostructure is not very sensitive to 
the exact geometry, as was already the case in Sect. 21.3.2. 

Finally, the fabricated hybrid nanostructures have an extremely rough Al top 
surface caused by the morphological growth of this metal, Fig. 21.6c. Even with 
advanced nanofabrication techniques, such roughness cannot be avoided [72], and 
an interesting question is whether it disturbs the nanostructure optical response. 
Since the SIE relies on a triangular mesh, it is possible to build models for rough 
nanostructures, as shown in Fig. 21.7d and f. This roughness was simply created
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by adding Gaussian noise to the flat original surface, with a maximum amplitude 
of 8 nm for the rough surface and 60 nm for the very rough one. From the field 
distributions in Fig. 21.7, one does not notice significant differences between the 
perfectly flat surfaces and the roughened ones. This is confirmed by the maximum 
field enhancement and the scattering cross sections in Fig. 21.8, especially for the 
latter, which does not change at all compared with the perfectly flat surface. This 
information is useful to guide experimental efforts in the direction where they really 
impact the optical response: investing time in developing a process that would 
produce flat Al surfaces is not worth for those experiments. Actually, the physical 
reason for this lack of influence of the roughness is in the polarization used for those 
measurements: the incident field being parallel to the top Al surface, it does not feel 
a roughness that is essentially normal to that surface. 

21.4 Summary and Outlook 

In summary, we have discussed some examples where numerical simulations based 
on effectively fabricated nanostructures can provide additional insights into an 
experiment. While calculations are often used at the inception of a project, closing 
the loop and redoing calculations from the experimental data is very rewarding 
and one should probably perform the full cycle “simulations . → nanofabrication . →
characterization . → measurements . → simulations” several times to gain additional 
insights into the underlying phenomena.
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For the specific case of plasmonics considered here, we have noticed that the 
same experimental detail can play a very different role, depending on the type of 
physical observable. For example, roughness can significantly influence the near-
field but be totally unnoticed in the far-field. It can affect molecules adsorbed on the 
surface, while refractive index sensing can be fully immune to such roughness. As 
scientists, we often have a taste for “perfection” and wish to fabricate nanostructures 
that have ideal shapes. Obviously, this is not possible since materials have their own 
minds and will not submit to our square-headed epitome. Knowing how far to go 
(or not) towards perfection can save a lot of time and efforts. 

Approaching the experimental situation as closely as possible is certainly a 
challenging task. An important issue is to build numerical models that mimic the 
effectively realized nanostructures. Here, we have used a very simple approach 
based on SEM images. Tomography in an electron microscope provides a more 
sophisticated way forward to retrieve accurate 3D representations of nanostructures 
[43–45]. At the same time, it is clear that each individual nanostructure will be 
different and efforts should also be invested in building statistics to determine the 
details that really matter for the optical response. 

Another key issue that we have not addressed in this chapter is the dielectric 
function used for the simulations. Even for plasmonic metals, one finds many 
different values in the literature, which can produce quite different optical responses. 
In addition, it is very unlikely that a metal deposited in a specific machine will 
exactly match those values from the literature. In principle, one should characterize 
each material with ellipsometry to retrieve its exact dielectric function, which is 
quite tedious and might not even provide a more accurate solution: ellipsometry 
requires thick metal films (at least 100 nm thick), while plasmonic nanostructures 
are often much thinner and have a different roughness, which can influence at least 
the absorption. 

Altogether, bridging the gap between theory and experiment is not such a trivial 
task. However, some of the simple steps illustrated in this chapter can help build 
numerical models that match the experiment better. In any case, the very first step 
in that endeavour is to check the convergence and stability of the numerical method 
at hand. 
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