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Abstract: We derive generalized sheet transition conditions (GSTCs) including dipoles and
quadrupoles, using generalized functions (distributions). This derivation verifies that the GSTCs
are valid for metasurfaces in non-homogeneous environments, such as for practical metasurfaces
fabricated on a substrate. The inclusion of quadrupoles and modeling of spatial dispersion
provides additional hyper-susceptibility components which serve as degrees of freedom for wave
transformations. We leverage them to demonstrate a generalized Brewster effect with multiple
angles of incidence at which reflection is suppressed, along with an “anti-Brewster” effect where
transmission is suppressed.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The study of metamaterials, and metasurfaces in particular, has reached a level of maturity such
that recent works present increasingly elaborate applications. While at first, metasurfaces were
used to provide simple wave transformations [1,2] and flat optics [3], they have now been used
for sophisticated holography [4] and recently for computation and signal processing [5–9]. This
last application – where transfer functions are implemented in the Fourier domain – has required
intricate design of meta-atoms to achieve control of the angular scattering response [9–11].

To aid in the design of metasurfaces for these applications, several modeling techniques have
established themselves [12]. One popular approach is to model a metasurface as an impedance
sheet which supports electric and magnetic currents [12–14]. This induces boundary conditions
on the tangential parts of the electric and magnetic fields. However, the impedances do not
provide characteristic parameters to represent the metasurface since they depend on the incident
fields [15]. A second approach is to determine the polarizability of an isolated meta-atom and
account for its coupling through the array to other meta-atoms using Green’s functions in the
so-called T-matrix approach [16]. This provides insights into the multipole moments which are
present, and how they couple together. However, it does not serve as a boundary condition; rather,
it provides the scattered fields when the incident field is specified. The last popular approach is
the use of surface susceptibilities, which represent the metasurface as a zero-thickness sheet of
multipole moment densities [17–21]. Given these moments along a surface, generalized sheet
transition conditions (GSTCs) provide boundary conditions on the fields adjacent to the surface
[22]. These have been used to design metasurfaces [23] and also implemented in numerical
methods to greatly decrease the computational resources needed for their analysis [24–26].

Recently, it has become evident that susceptibility modeling, which was previously limited to
the dipolar regime, should include spatial dispersion (nonlocality) [27]. This was analyzed with
“angle-dispersive” dipolar susceptiblities in [28] while we considered higher-order multipoles
in [29,30]. These considerations are especially true for optical metasurfaces, which generally
have large meta-atoms with dimensions that approach the wavelength. Using GSTCs that were
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generalized to include quadrupoles, we demonstrated an improvement in the modeling accuracy
[30]. In addition to improving the accuracy, the additional susceptibility components provide
additional degrees of freedom for designing metasurfaces.

However, the derivations in [30] are limited since they assume the media below and above
the metasurface to be identical. Thus, it is not a priori obvious whether they would rigorously
apply to practical metasurfaces which are usually fabricated on a substrate. In this work, we
overcome the limitation of [30] by deriving the GSTCs, but using a different approach based
on distributions (generalized functions) [31], inspired by the work of Idemen [32]. Ultimately,
our derivation produces GSTCs identical to those in [30], which demonstrates that the latter can
indeed be used in the presence of a substrate.

To demonstrate the utility of these GSTCs, we demonstrate the full control of the Brewster
angle, where reflection at a dielectric interface is suppressed at a particular angle. By placing
a metasurface at the dielectric interface, it is possible to tune the Brewster angle, as shown in
[33,34]. We now leverage the higher-order susceptibility components to show that the additional
degrees of freedom allow for further control, such as multiple Brewster angles, and suppression
of transmission at particular angles—which we call “anti-Brewster” angles.

This paper is outlined as follows. First, we introduce generalized functions and derive the
GSTCs in Section 2. Next, Section 3. presents considerations to enforce the physicality of
the analysis: spatial dispersion, properties of the moment tensors, and spatial symmetries of
meta-atoms. Then, several examples of controlling the Brewster and “anti-Brewster” angles are
presented in Section 5. Finally, we conclude in Section 6.

2. GSTCs with quadrupoles

In this section, we will generalize the GSTCs to account for quadrupolar moments. Such a
derivation was performed in [30], but with a caveat: the derivation assumed the bulk media
adjacent to the metasurface to be homogeneous, and identical on both sides. This limitation arose
from the use of the vector potential of the surface currents. We will overcome this limitation using
an alternative derivation which represents the fields using distributions (generalized functions),
following the approach taken by Idemen [32]. Using this approach, the bulk material properties
can be arbitrary as they are embedded in the definitions of the fields. Nevertheless, it should be
noted that the following developments are valid only if the metasurface is homogenizable, i.e.,
that its electromagnetic response can be expressed via effective material parameters. For this to
be the case, the period of the metasurface array must be smaller than λ0/(ni + ns), where λ0 is
the wavelength in vacuum and ni and ns are the refractive indices of the incidence and scattering
media, to prevent the existence of diffraction orders even up to grazing angles [35].

Distributions are ideal for modeling metasurfaces as zero-thickness discontinuities, since they
formalize the notion of an “impulse function”. For example, the electric polarization of a flat
metasurface in the xy plane may be expressed as P(x, y, z) = P′(x, y)δ(z), where δ(z) is the Dirac
delta distribution, which in turn is rigorously defined using test functions [32]. More generally,
any field quantity Λ can be decomposed into a continuous part and a discontinuous part:

Λ(z) = {Λ(z)} +
∞∑︂

k=0
Λkδ

(k)(z), (1)

where {Λ(z)} represents the continuous part of Λ(z) and a summation of the Dirac distribution
and its derivatives is used to represent the discontinuity, as in Fig. 1. By interpreting Maxwell’s
equations with all field quantities as distributions, discontinuities in the fields are acceptable and
treated rigorously, one arrives at a new set of equations called the universal boundary conditions
[32,36].
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Fig. 1. A arbitrary discontinuous function Λ(z) can be divided into a continuous part {Λ(z)}
and the discontinuity expressed as a summation of Dirac delta functions.

The starting point to derive the GSTCs are the universal boundary conditions and the following
relations for the electric and magnetic flux densities for media with multipolar responses [29,37]:

D = ϵ0E + P − 1
2

Q · ∇ (2a)

B = µ0

(︃
H +M − 1

2
S · ∇

)︃
, (2b)

where P is the electric dipole density, Q is the electric quadrupolar moment density, M is the
magnetic dipolar density, and S is the magnetic quadrupolar density. We now express (2) for
the case of a metasurface using (1) and restricting ourselves to k = 0 as is typically done for
modeling metasurfaces with the GSTC since this corresponds to representing it as a single sheet
discontinuity [35]. Moreover, we also assume that the two media on both sides of the metasurface
do not exhibit quadrupolar responses implying that each of the quadrupolar moments may be
represented by point sources only present on the metasurface (no continuous part and k = 0) and
so we re-write (2) as

D = ϵ0{E} + {P} + ϵ0E0δ
(0)(z) + P0δ

(0)(z) − 1
2

[︂
Q0δ

(0)(z)
]︂
· ∇ (3a)

B = µ0

(︃
{H} + {M} +H0δ

(0)(z) +M0δ
(0)(z) − 1

2

[︂
S0δ

(0)(z)
]︂
· ∇

)︃
, (3b)

where the bulk polarization (with possibly different media on the two sides of the metasurface) is
embedded within {P} and {M} as well as within the fields E, H, D and B. Then, by simplifying
(3) and substituting it into the universal boundary conditions as shown in Supplement 1, and
assuming that there are no impressed charges or currents on the metasurface, one arrives at the
following GSTCs:

z × ∆E = −jωµ0Mt +
k2

0
2ϵ0

ẑ ×
(︂
Q · ẑ

)︂

− 1
ϵ0

ẑ × ∇t

[︃
Pz − 1

2
(∇tẑ + ẑ∇t) : Q

]︃
+

jωµ0
2

[︂(︂
S − SzzI

)︂
· ∇t

]︂ (4a)

z × ∆H = jωPt +
k2

0
2

ẑ ×
(︂
S · ẑ

)︂

− ẑ × ∇t

[︃
Mz − 1

2
(∇tẑ + ẑ∇t) : S

]︃
− jω

2

[︂(︂
Q − QzzI

)︂
· ∇t

]︂
,

(4b)

where I is the identity matrix and the t subscript indicates the tangential components. These
are in agreement with those derived independently in [30]; however, our derivation proves that

https://doi.org/10.6084/m9.figshare.23509047


Research Article Vol. 31, No. 14 / 3 Jul 2023 / Optics Express 22985

the GSTCs are independent of the media on either side of the metasurface, since there is no
restrictions on the bulk moments, {P} and {M}, in (3). Nevertheless, the information regarding
the material parameters of these media remains present in these equations as it is embedded
within the definition of the fields that interact with the metasurface. Additionally, our derivation
provides boundary conditions on the normal components of the fields, which have not yet been
shown in the literature:

z · ∆D = −∇t ·
(︃
Pt − jωµ0ϵ0

2
ẑ ×

(︂
S · ẑ

)︂
−
(︂
Q − QzzI

)︂
· ∇t

)︃
(4c)

z · ∆B = −∇t · µ0

(︃
Mt +

jω
2

ẑ ×
(︂
Q · ẑ

)︂
−
(︂
S − SzzI

)︂
· ∇t

)︃
. (4d)

Naturally, these simplify to the conventional textbook boundary conditions for a dielectric
interface when there are no surface polarization moments, which can be easily verified by setting
P =M = Q = S = 0.

3. Non-local considerations

The GSTCs (4 provide boundary conditions, but do not model how the polarization densities
arise. These can be captured using multipolar susceptibilities. In this section, we formulate
constitutive relations, and discuss some considerations that must be taken when the metasurface
is placed in a non-uniform environment.

3.1. Acting fields

The fields which excite the meta-atoms are defined as the average of the adjacent fields on either
side of the metasurface. As in [30,35,38], these average fields are usually defined as

Eav =
1
2
(Ei + Er + Et)|z=0 (5a)

Hav =
1
2
(Hi +Hr +Ht)|z=0 . (5b)

This works well if the metasurface is freestanding, but is inappropriate if the metasurface is
placed between two different media. Considering a thin slab placed between two different media,
it can be shown (see Supplement 1 or [39]) that the normal components should be defined using
the flux densities, ϵEz and µHz, which remain continuous at a dielectric interface, such that the
acting fields are

Eav = Eav,t +
1
2
(︁
ϵ1Ei,z + ϵ1Er,z + ϵ2Et,z

)︁ |︁|︁
z=0 ẑ, (6a)

Hav = Hav,t +
1
2
(︁
µ1Hi,z + µ1Hr,z + µ2Ht,z

)︁ |︁|︁
z=0 ẑ, (6b)

where ϵ1, µ1 and ϵ2, µ2 correspond to the material parameters of the media at the top and the
bottom sides of the metasurface, respectively.

3.2. Spatial dispersion

Given the acting fields (6), the constitutive relations can be written out. If the metasurface
response may be described in terms of only dipolar components (e.g., when the metasurface

https://doi.org/10.6084/m9.figshare.23509047
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unit cell is much smaller than the wavelength so that higher-order multipolar components are
negligible), the induced moments are related using [23,30]

⎡⎢⎢⎢⎢⎣
P

M

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
ϵ0 χee c−1

0 χem

η−1
0 χme χmm

⎤⎥⎥⎥⎥⎦
·
⎡⎢⎢⎢⎢⎣
Eav

Hav

⎤⎥⎥⎥⎥⎦
, (7a)

where the constants (i.e., ϵ0, η0) are selected so the surface susceptibilities have the unit of length
[35]. In this dipolar representation, note that spatial dispersion (nonlocality) is represented by
the presence of the bianisotropic parameters χem and χme. Now, when the metasurface unit
cell becomes large, higher-order multipoles must be considered, starting with the quadrupoles.
Including these adds a plethora of additional hyper-susceptibility components [30]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pi

Mi

Qil

Sil

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϵ0 χ
ij
ee

1
c0
χ

ij
em

ϵ0
2k0
χ

′ijk
ee

1
2c0k0
χ

′ijk
em

1
η0
χ

ij
me χ

ij
mm

1
2η0k0

χ
′ijk
me

1
2k0
χ

′ijk
mm

ϵ0
k0

Qilj
ee

1
c0k0

Qilj
em

ϵ0
2k2

0
Q

′iljk
ee

1
2c0k2

0
Q

′iljk
em

1
η0k0

Silj
me

1
k0

Silj
mm

1
2η0k2

0
S
′iljk
me

1
2k2

0
S
′iljk
mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eav,j

Hav,j

∇kEav,j

∇kHav,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

Compared to (7), the extended constitutive relations (8) now include not only dipolar and
quadrupolar responses but also their dependence on the fields and the gradients of the fields so as
to account for higher-order spatially dispersive (nonlocal) effects. Interestingly, note that the
quadrupolar susceptibilities that depend on the fields directly (e.g., Qil ∝ Qilj

eeEav,j) happen to
be reciprocally connected to the dipolar components that depend on the field gradients (e.g.,
Pi ∝ χ

′ijk
ee ∇kEav,j) such that Qilj

ee = χ
′jli
ee and so on for the other hyper-susceptibility tensors [29]. At

this point, for simplicity but without loss of generality, we will consider TM-polarized plane-wave
fields propagating in the xz plane. Then, as shown in [30], (8) simplifies to

[︂
Px Pz My Qxz Qxx Qzz Syx Syz

]︂T
∝

X·
[︂
Eav,x Eav,z Hav,y ∂xEav,z + (∂zEx)|av ∂xEav,x (∂zEz)|av ∂xHav,y

(︁
∂zHy

)︁ |︁|︁
av

]︂T
,
(9)

where X is the hypersusceptibilty matrix shown in Fig. 2(a). It is an 8 × 8 matrix with 64 terms
in general, but can be simplified by imposing conditions such as reciprocity and tracelessness, as
we will do shortly. Before that, consider that it is non-sensical to include the derivatives ∂z, since
the values Eav,x, Eav,z and Hav,y are independent of z, as defined in (6). That is, they are functions
of x and y only, and so the derivative (∂z) would be zero. However, we can overcome this issue by
switching the order of operations; that is, by performing differentiation first, and then averaging.
Furthermore, though the derivatives along z are still problematic as they may be discontinuous,
we can transform them into tangential derivatives using Maxwell’s equations, as explained next.

First, consider Faraday’s equation in either medium, ∇ × E = jωB, which becomes ∂zEx =

∂xEz − jωBy. Then, it follows that the spatial average of the derivative along z of Ex may be
obtained as

(∂zEx)|av =
1
2
(︁
∂zEi,x + ∂zEr,x + ∂zEt,x

)︁ |︁|︁
z=0

= ∂xEav,z − jωBav,y

= ∂xEav,z − jω
2

(︁
µ1Hi,y + µ1Hr,y + µ2Ht,y

)︁ |︁|︁
z=0 ,

(10a)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜒𝑥𝑥
ee 𝜒𝑥𝑧

ee 𝜒
𝑥𝑦
em 𝜒

′𝑥𝑥𝑧
ee 𝜒

′𝑥𝑥𝑥
ee 𝜒

′𝑥𝑧𝑧
ee 𝜒

′𝑥𝑦𝑥
em 𝜒

′𝑥𝑦𝑧
em

𝜒𝑧𝑥
ee 𝜒𝑧𝑧

ee 𝜒
𝑧𝑦
em 𝜒

′𝑧𝑥𝑧
ee 𝜒

′𝑧𝑥𝑥
ee 𝜒

′𝑧𝑧𝑧
ee 𝜒

′𝑧𝑦𝑥
em 𝜒

′𝑧𝑦𝑧
em

𝜒
𝑦𝑥
me 𝜒

𝑦𝑧
me 𝜒

𝑦𝑦
mm 𝜒

′𝑦𝑥𝑧
me 𝜒

′𝑦𝑥𝑥
me 𝜒

′𝑦𝑧𝑧
me 𝜒

′𝑦𝑦𝑥
mm 𝜒

′𝑦𝑦𝑧
mm

𝑄𝑥𝑧𝑥
ee 𝑄𝑥𝑧𝑧

ee 𝑄
𝑥𝑧𝑦
em 𝑄

′𝑥𝑧𝑥𝑧
ee 𝑄

′𝑥𝑧𝑥𝑥
ee 𝑄

′𝑥𝑧𝑧𝑧
ee 𝑄

′𝑥𝑧𝑦𝑥
em 𝑄

′𝑥𝑧𝑦𝑧
em

𝑄𝑥𝑥𝑥
ee 𝑄𝑥𝑥𝑧

ee 𝑄
𝑥𝑥𝑦
em 𝑄

′𝑥𝑥𝑥𝑧
ee 𝑄

′𝑥𝑥𝑥𝑥
ee 𝑄

′𝑥𝑥𝑧𝑧
ee 𝑄

′𝑥𝑥𝑦𝑥
em 𝑄

′𝑥𝑥𝑦𝑧
em

𝑄𝑧𝑧𝑥
ee 𝑄𝑧𝑧𝑧

ee 𝑄
𝑧𝑧𝑦
em 𝑄

′𝑧𝑧𝑥𝑧
ee 𝑄

′𝑧𝑧𝑥𝑥
ee 𝑄

′𝑧𝑧𝑧𝑧
ee 𝑄

′𝑧𝑧𝑦𝑥
em 𝑄

′𝑧𝑧𝑦𝑧
em

𝑆
𝑦𝑥𝑥
me 𝑆

𝑦𝑥𝑧
me 𝑆

𝑦𝑥𝑦
mm 𝑆

′𝑦𝑥𝑥𝑧
me 𝑆

′𝑦𝑥𝑥𝑥
me 𝑆

′𝑦𝑥𝑧𝑧
me 𝑆

′𝑦𝑥𝑦𝑥
mm 𝑆

′𝑦𝑥𝑦𝑧
mm

𝑆
𝑦𝑧𝑥
me 𝑆

𝑦𝑧𝑧
me 𝑆

𝑦𝑧𝑦
mm 𝑆

′𝑦𝑧𝑥𝑧
me 𝑆

′𝑦𝑧𝑥𝑥
me 𝑆

′𝑦𝑧𝑧𝑧
me 𝑆

′𝑦𝑧𝑦𝑥
mm 𝑆

′𝑦𝑧𝑦𝑧
mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Full susceptibility matrix (8 × 8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜒𝑥𝑥
ee 𝜒𝑥𝑧

ee 𝜒
𝑥𝑦
em 𝜒

′𝑥𝑥𝑧
ee 𝜒

′𝑥𝑥𝑥
ee −𝜒′𝑥𝑥𝑥

ee 𝜒
′𝑥𝑦𝑥
em 𝜒

′𝑥𝑦𝑧
em

𝜒𝑥𝑧
ee 𝜒𝑧𝑧

ee 𝜒
𝑧𝑦
em 𝜒

′𝑧𝑥𝑧
ee 𝜒

′𝑧𝑥𝑥
ee −𝜒′𝑧𝑥𝑥

ee 𝜒
′𝑧𝑦𝑥
em 𝜒

′𝑧𝑦𝑧
em

−𝜒𝑥𝑦
em −𝜒𝑧𝑦

em 𝜒
𝑦𝑦
mm 𝜒

′𝑦𝑥𝑧
me 𝜒

′𝑦𝑥𝑥
me −𝜒′𝑦𝑥𝑥

me 𝜒
′𝑦𝑦𝑥
mm 𝜒

′𝑦𝑦𝑧
mm

𝜒
′𝑥𝑥𝑧
ee 𝜒

′𝑧𝑥𝑧
ee −𝜒′𝑦𝑥𝑧

me 𝑄
′𝑥𝑧𝑥𝑧
ee 𝑄

′𝑥𝑥𝑥𝑧
ee −𝑄′𝑥𝑥𝑥𝑧

ee −𝑆′𝑦𝑥𝑧𝑥me −𝑆′𝑦𝑧𝑧𝑥me

𝜒
′𝑥𝑥𝑥
ee 𝜒𝑧𝑥𝑥

ee −𝜒′𝑦𝑥𝑥
me 𝑄

′𝑥𝑥𝑥𝑧
ee 𝑄

′𝑥𝑥𝑥𝑥
ee −𝑄′𝑥𝑥𝑥𝑥

ee −𝑆′𝑦𝑥𝑥𝑥me −𝑆′𝑦𝑧𝑥𝑥me

−𝜒𝑥𝑦𝑥
em −𝜒𝑧𝑦𝑥

em 𝜒
𝑦𝑦𝑥
mm 𝑆

′𝑦𝑥𝑧𝑥
me 𝑆

′𝑦𝑥𝑥𝑥
me −𝑆′𝑦𝑥𝑥𝑥me 𝑆

′𝑦𝑥𝑦𝑥
mm 𝑆

′𝑦𝑥𝑦𝑧
mm

−𝜒𝑥𝑦𝑧
em −𝜒𝑧𝑦𝑧

em 𝜒
𝑦𝑦𝑧
mm 𝑆

′𝑦𝑧𝑧𝑥
me 𝑆

′𝑦𝑧𝑥𝑥
me −𝑆′𝑦𝑧𝑥𝑥me 𝑆

′𝑦𝑥𝑦𝑧
mm 𝑆

′𝑦𝑧𝑦𝑧
mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) Reciprocal & traceless (7 × 8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜒𝑥𝑥
ee 0 0 0 0 0 0 𝜒

′𝑥𝑦𝑧
em

0 𝜒𝑧𝑧
ee 0 0 0 0 0 0

0 0 𝜒
𝑦𝑦
mm 𝜒

′𝑦𝑥𝑧
me 0 0 0 0

0 0 −𝜒′𝑦𝑥𝑧
me 𝑄

′𝑥𝑧𝑥𝑧
ee 0 0 0 0

0 0 0 0 𝑄
′𝑥𝑥𝑥𝑥
ee −𝑄′𝑥𝑥𝑥𝑥

ee 0 0

0 0 0 0 0 0 𝑆
′𝑦𝑥𝑦𝑥
mm 0

−𝜒𝑥𝑦𝑧
em 0 0 0 0 0 0 𝑆

′𝑦𝑧𝑦𝑧
mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(c) All symmetries: 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 , 𝐶4𝑧

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜒𝑥𝑥
ee 0 𝜒

𝑥𝑦
em 𝜒

′𝑥𝑥𝑧
ee 0 0 0 𝜒

′𝑥𝑦𝑧
em

0 𝜒𝑧𝑧
ee 0 0 𝜒

′𝑧𝑥𝑥
ee −𝜒′𝑧𝑥𝑥

ee 0 0

−𝜒𝑥𝑦
em 0 𝜒

𝑦𝑦
mm 𝜒

′𝑦𝑥𝑧
me 0 0 0 𝜒

′𝑦𝑦𝑧
mm

𝜒
′𝑥𝑥𝑧
ee 0 −𝜒′𝑦𝑥𝑧

me 𝑄
′𝑥𝑧𝑥𝑧
ee 0 0 0 −𝑆′𝑦𝑧𝑧𝑥me

0 𝜒𝑧𝑥𝑥
ee 0 0 𝑄

′𝑥𝑥𝑥𝑥
ee −𝑄′𝑥𝑥𝑥𝑥

ee 0 0

0 0 0 0 0 0 𝑆
′𝑦𝑥𝑦𝑥
mm 0

−𝜒𝑥𝑦𝑧
em 0 𝜒

𝑦𝑦𝑧
mm 𝑆

′𝑦𝑧𝑧𝑥
me 0 0 0 𝑆

′𝑦𝑧𝑦𝑧
mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(d) All symmetries but 𝜎𝑧

Fig. 2. The general susceptibility matrix X, for TM-polarized fields propagating in the xz
plane, is shown in (a) and has 64 terms. By enforcing reciprocity and tracelenssness, this is
reduced to 28 terms as in (b). Subsequently, spatial symmetries of the metasurface can be
leveraged to further simplify the matrix, as shown for two examples in (c) and (d).

where we have eliminated ∂z. Next, consider Gauss’ equation, ∇ · D = 0 in either medium, that
is, ∂zDz = −∂xDx. Then,

(∂zEz)|av = −1
2
(︁
ϵ1∂xEi,x + ϵ1∂xEr,x + ϵ2∂xEt,x

)︁ |︁|︁
z=0 . (10b)

Finally, consider Ampere’s equation, ∇ × H = jωD; that is, ∂zHy = ∂yHz − jωDx.

(︁
∂zHy

)︁ |︁|︁
av =

1
2
(︁
∂zHi,y + ∂zHr,y + ∂zHt,y

)︁ |︁|︁
z=0

= ∂yHav,z − jωDav,x

= ∂yHav,z − jω
2

(︁
ϵ1Ei,x + ϵ1Er,x + ϵ2Et,x

)︁ |︁|︁
z=0 .

(10c)

Now, with reference to (10), (9) is modified to[︂
Px Pz My Qxz Qxx Qzz Syx Syz

]︂T
∝

X·
[︂
Eav,x Eav,z Hav,y ∂xEav,z + (∂zEx)|av ∂xEav,x (∂zEz)|av ∂xHav,y

(︁
∂zHy

)︁ |︁|︁
av

]︂T
.

(11)

3.3. Tensor symmetries, tracelessness, and reciprocity

Linear time-invariant metasurfaces that are not biased by a time-odd quantity (such as a magnetic
field) are reciprocal and as such must satisfy reciprocity conditions [40,41]. Furthermore, we
note that all of the moments should be symmetrical; e.g., Qij = Qji [42]. These symmetry and
reciprocity properties of the moments constrain the susceptibility terms such that they are related
to one another as shown in [29]. Enforcing these relations reduces the 64 terms in Fig. 2(a) to 36.
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In addition to being symmetrical, the tensors should be traceless. Only if this is the case are
the moments truly physically meaningful, and are called irreducible [42,43]. In particular, note
that

∑︁
i Qii = 0, which implies Qzz = −Qxx given that Qyy = 0 in our simplified problem. In

contradiction to this condition, Qzz and Qxx are independent in (11).
To enforce tracelessness, note how the 6th row in Fig. 2(a) should be the negative of the 5th

row (Qzz = −Qxx), and can thus be eliminated. However, reciprocity must still be enforced: the
5th row and 5th column are related by reciprocity and tensor symmetries. Given the relationship
between the 4th and 5th rows, reciprocity is maintained by rewriting the 5th column as the
negative of the 4th column. Then, the 5th row can be eliminated and we arrive at the 7× 8 matrix
in Fig. 2(b). This matrix ensures tensor symmetries, reciprocity, and traceless, and contains 28
unique terms. After eliminating Qzz, (11) becomes

[︂
Px Pz My Qxz Qxx Syx Syz

]︂T
∝

X·
[︂
Eav,x Eav,z Hav,y ∂xEav,z + (∂zEx)|av ∂xEav,x (∂zEz)|av ∂xHav,y

(︁
∂zHy

)︁ |︁|︁
av

]︂T
.

(12)

3.4. Spatial symmetries

Neumann’s principle states that the material parameters of a system should exhibit the same
symmetry properties as the physical structure they describe. This implies that if the considered
physical structure (metasurface) is invariant under certain symmetry operations, then so should
their material parameters (susceptibility tensors) [44,45].

For example, consider the metasurface in Fig. 3(a), with all possible symmetries: reflection
(σx, σy, σz) and rotation (C4,z). These symmetries can be used to write invariance conditions
on the susceptibility tensors in (8) which eliminate incongruous components. The invariance
relations are given in [45] along with an algorithm to easily apply them. Following this algorithm,
the hypersusceptiblity matrix reduces to the 9 terms in Fig. 2(c). Furthermore, if the unit cell is
deeply subwavelength (p ≪ λ, where λ is the wavelength in the background, or the shorter of the
two wavelengths in the top or bottom media), then higher-order susceptibilities will be negligible
such that the surface can be described using only χxx

ee , χyy
mm, and χzz

ee. Also, if the metasurface is
very thin, as in 3(b), then χzz

ee may be negligible, such that only χxx
ee and χyy

mm are necessary.

(a) 𝜒𝑥𝑥
ee , 𝜒𝑦𝑦

mm, and 𝜒𝑧𝑧
ee (b) 𝜒𝑥𝑥

ee and 𝜒
𝑦𝑦
mm (c) 𝜒𝑥𝑥

ee , 𝜒𝑦𝑦
mm, 𝜒𝑥𝑦

em, 𝑆𝑦𝑧𝑧𝑥me , ...

𝑦𝑥

𝑧

𝑝 � 𝜆0
𝑝 � 𝜆0

𝑝 < 𝜆0

Fig. 3. Possible unit cells that have given spatial symmetries: (a) and (b) have all the
structural symmetries as in Fig. 2(c) but are deeply subwavelength such that quadrupolar
responses are negligible. Since the height of the particles in (b) is negligible, the normal
response χzz

ee is also negligible in this case. In (c), σz symmetry is broken, corresponding
to Fig. 2(d), and is furthermore only slightly subwavelength, meaning that quadrupolar
responses are possible.

However, optical meta-atoms are generally large, such that the dipolar model is inappropriate
[30]. Then, quadrupolar susceptibilities are necessary, and these provide additional degrees
of freedom for specifying wave transformations. To provide even more additional degrees of
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freedom, spatial symmetries can be broken. For example, consider breaking σz symmetry, as is
the case for the meta-atom in Fig. 3(c). By following the algorithm in [45], one arrives at the
matrix with 14 terms in Fig. 2(d). This matrix allows for bianisotropy (e.g. χxy

em), and will be used
later to demonstrate the utility of the additional degrees of freedom for wave transformations.

4. Synthesis and scattering analysis

Given (4a-b) and (11), it is possible to calculate the fields that will be scattered from a metasurface.
In this section, we will consider how plane waves are scattered for a metasurface and how to
engineer the susceptibilities to control the angular scattering behaviour.

We will consider TM-polarized plane waves propgagting in the xz plane. With reference Fig. 4,
we express the fields as

Ha = SaH0ŷe−jka ·r (13a)

Ea =
ηa
ka

Ha × ka (13b)

with a = i for the incident field (fields are normalized with Si = 1), a = r for the reflected field
(Sr = −S11, the reflection coefficient), and a = t for the transmitted field (St = S21, the transmission
coefficient). For backwards illumination, one replaces 1 ⇐⇒ 2 along with kx → −kx, and
kz,{1,2} → −kz,{2,1}. This is shown in Fig. 4.

(a) Forward illumination (b) Backward illumination

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝜃i

𝜃r

𝜃t

𝜃i

𝜃r

𝜃t

k i =
[
𝑘𝑥

0 𝑘 𝑧1
] 𝑇

kr = [
𝑘𝑥 0 − 𝑘

𝑧1
]𝑇

k t =
[
𝑘𝑥

0 𝑘 𝑧2
] 𝑇

k i =
[ −𝑘𝑥 0 − 𝑘 𝑧2

] 𝑇

kr = [
−𝑘𝑥 0 𝑘

𝑧2
]𝑇

k t =
[ −𝑘𝑥 0 − 𝑘 𝑧1

] 𝑇

Hi

Hr

Ht

Ei

Er

Et

Hi

Hr

Ht

Ei

Er

Et

𝜖1, 𝜇1, 𝜂1, 𝑘1 𝜖2, 𝜇2, 𝜂2, 𝑘2 𝜖1, 𝜇1, 𝜂1, 𝑘1 𝜖2, 𝜇2, 𝜂2, 𝑘2

𝑆11

𝑆21

𝑆22

𝑆12metasurface

Fig. 4. A depiction of the TM-polarized plane waves incident along the xz plane onto a
metasurface placed at an interface between two different media at z = 0. The situations for
both forward and backward illumination are depicted, with the incident field approaching
from the first and second media, respectively.

Now, these fields can be substituted into the GSTCs (4a-b) and the constitutive relations (11).
In the case of forward illumination, this provides equations to solve for the two unknowns S11
and S21, and for backwards illumination one can solve for S22 and S21. However, the expressions
for these S-parameters are very unwieldy, and so we will limit the analysis to some of the terms
from Fig. 3. Considering the dipolar susceptibilities χxx

ee , χyy
mm, χzz

ee, then

S{11,22}(kx) = −
kz,{1,2}α + kz,{2,1}

(︂
4jkz,{1,2} χxx

ee + n2
{1,2}α

)︂
+ 4jn2

{1,2}
(︁
k2

x χ
zz
ee + k2

0 χ
yy
mm

)︁
kz,{1,2}α + kz,{2,1}

(︂
4jkz,{1,2} χxx

ee + n2
{1,2}α

)︂
+ 4jn2

{1,2}
(︂
k2

x χ
zz
ee − k2

0 χ
yy
mm

)︂ (14a)

S{21,12}(kx) =
2kz,{1,2}n1n2α

kz,{1,2}α + kz,{2,1}
(︂
4jkz,{1,2} χxx

ee + n2
{1,2}α

)︂
+ 4jn2

{1,2}
(︂
k2

x χ
zz
ee − k2

0 χ
yy
mm

)︂ (14b)
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α = k2
x χ

xx
ee χ

zz
ee + k2

0 χ
xx
ee χ

yy
mm − 4, (14c)

with the first subscripts selected for forward illumination (S11 and S21) and the second for
backward illumination (S22 and S12).

Meanwhile, for use later, we will also derive expressions for the scattering with χxy
em, Syzzx

me . We
find

S{11,22}(kx) =
∓kz,1η

2
2β

± ± kz,2η
2
1β

∓

kz,1η2β± + kz,2η1β∓
(15a)

S{21,12}(kx) =
2n1n2kz,{1,2}

⎡⎢⎢⎢⎢⎣
4k4

x (Syzzx
me )2 + k4

0(S
yzzx
me + 4χxy

em)2

−4k2
0
(︁
k2

xSyzzx
me (Syzzx

me + 4χxy
em) − 16

)︁
⎤⎥⎥⎥⎥⎦

kz,1η2β± + kz,2η1β∓
(15b)

β± =
[︁
8jk0 ± 2k2

xSyzzx
me ∓ k2

0(Syzzx
me + 4χxy

em)
]︁2 , (15c)

where the top sign is selected for forward illumination (S11, S21) and the bottom sign is selected
for backward illumination (S22, S12).

Given these expressions, one can solve for the susceptibilities required to control the angular
scattering behaviour. For example, to suppress reflection at some angle k′

x, one needs to solve
|S11(k′

x)| = 0.
Finally, what we have discussed so far only corresponds to the first part of the general

metasurface synthesis procedure described in [30,35]. The second part consists in finding
the shape of the actual scattering particles, such as those shown in Fig. 3, that would be able
to realize the proposed metasurfaces whose scattering parameters are given in (14) and (15).
While this work concentrates on the first part of this synthesis procedure, the second part could
be achieved by simulating the scattering parameters of the unit cell in Fig. 3 using periodic
boundary conditions and for multiple angles of incidence. Then, using in (12), a large system of
equations can be formulated that relates these scattering parameters to the metasurface effective
hyper-susceptibilities that can then be matched with those of (14) and (15), as detailed in [30,35].

5. Illustration: tuning Brewster’s angle

The Brewster angle is defined as the angle of incidence of a plane wave at a dielectric interface
where reflection is eliminated; i.e., there is complete transmission. For ordinary (non-magnetic)
materials, it only occurs for TM polarization, and can be understood intuitively from Fig. 5(a).
When the angle of incidence is θi,1 and the angle of refraction is θt,1, the wave vectors of the
refracted and reflected fields are orthogonal. Consequently, the bulk electric polarization in the
substrate is orthogonal to the electric field of the reflected field and it is impossible for the bulk
polarization to produce a reflected field. This Brewster angle θi = θB occurs at [46]

θB = tan−1
√︃
ϵ2
ϵ1

, (16)

which corresponds to kx = kB = k1 sin θB.
Using a metasurface, it is possible to tune θB [34]. In Fig. 5(b), a metasurface has been added

that has a surface polarization which has a non-zero projection onto the reflected electric field at
θi,1 and thus the reflection is no longer suppressed. However, now there can be another angle
θi,2 where the superposition of the scattered fields from the bulk and the metasurface result in
a suppression of the scattered fields, as in Fig. 5(c). By adjusting the metasurface, this angle
can be tuned. In fact, we will show that it is possible to have multiple such Brewster angles.
There is one caveat: metasurfaces are generally resonant and thus limited in bandwidth unlike
the broadband dielectric Brewster effect given by (16).

In this section, we will illustrate the use of the additional susceptibility components from
Fig. 2(d) to achieve this generalized Brewster effect.
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(a) (b) (c)

𝜃i,1 𝜃r,1

𝜃t,1
Pbulk (‖ Er)

Ei

Et

Er = 0

𝜃i,1 𝜃r,1

𝜃t,1
Pbulk

PMS

Ei,1

Et,1

Er,1 ≠ 0

𝜃i,2 𝜃r,2

𝜃t,2

Ei,2

Et,2

Er,2 = 0

Pbulk

PMS

Fig. 5. For ordinary dielectric media, the Brewster angle occurs when the reflected and
refracted rays are orthogonal and thus prohibit any reflection, as in (a). If a metasurface is
introduced, the additional polarization at the surface contributes to the reflected field and
thus they can be non-zero, as in (b). However, the Brewster angle now can occur at other
angle(s), when the net scattering due to the substrate and metasurface interfere destructively,
as in (c).

5.1. Generalized Brewster effect

Consider the very simple case of a Huygen’s metasurface with χxx
ee and χyy

mm. Using these two
terms, it is possible to achieve a single wave transformation [23], which we would desire to be the
suppression of reflection at a given angle of incidence. This corresponds to impedance matching
the two media at a given angle. We will ensure that the metasurface is lossless, which will ensure
that all power is transmitted. Setting |S11 | = 0 in (14) and solving for χxx

ee , we find

χxx
ee =

4η0(k2kz1η1 − k1kz2η2 − jk0k1k2 χ
yy
mm)

k0[k0 χ
yy
mmη0(k2kz1η1 − k1kz2η2) − 4jη1η2kz1kz2]

, (17)

which shows that χxx
ee must in general be complex, implying a metasurface with loss and gain, as

was noted in [34]. However, we will show that it is possible to avoid the need for loss or gain. In
order for the metasurface to be lossless, χxx

ee and χyy
mm must both be purely real [29]. To this end,

we will set χyy
mm to be a purely real number and then find χxx

ee from (17) which are also purely real.
Figure 6(a) shows ℑ{χxx

ee } plotted as a function of the angle of incidence (kx/k0) on the x-axis
and χyy

mm on the y-axis, for a particular case where a plane wave is incident from air (ϵ1 = 1)
onto a substrate (ϵ2 = 2). Consider in particular the black contours along which ℑ{χxx

ee } = 0.
Choosing a point along these contours corresponds to a lossless and gainless metasurface. Next,
Fig. 6(b) shows the same contours superimposed on a plot of ℜ{χxx

ee }. We see that the contours
cover all incident angles (−k0<kx<k0). Thus, one can choose any angle of incidence and the
necessary susceptibilities to achieve a Brewster effect at the given angle. For example, to achieve
kB = 0.6k0, χxx

ee = 4.44 × 10−4m and χyy
mm = 2.28 × 10−4m. The corresponding reflected and

transmitted power is plotted in Fig. 6(c), corroborating a Brewster angle at kB = 0.6k0. Note that
for the transmitted power, an angle-dependent factor is used in (cos θ2/cos θ1)|S21 |2 to project
the Poynting vector to ẑ [35]. To practically realize such a metasurface, one could use the cell in
Fig. 3(b).

Now, we will consider other susceptibility terms to demonstrate how the additional degrees
of freedom provide more control over the Brewster effect. Motivated by the scattering caused
by χzz

ee, which is proportional to sin2(θB) · χzz
ee (unlike cos2(θB) · χxx

ee and 1 · χyy
mm), which can be

deduced from (14), let us consider the combination of χzz
ee and χxx

ee . This could be achieved using
a meta-atom like that in Fig. 3(a) although χyy

mm may in general be present as well but it will
typically have a Lorentzian wavelength dependence such that the metasurface can be designed to
operate at a frequency where it is negligible [35].
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Fig. 6. Brewster angle control using dipolar susceptibilites, considering an interface with
two media having ϵ1 = 1 and ϵ2 = 2 and at λ0 = c0/(300THz). (a),(b) A depiction of the real
of imaginary part of χxx

ee which satisfy (17) given a desired kB and χyy
mm ∈ R. (c) Reflected

and transmitted power in the case of χxx
ee = 4.44 × 10−4m and χyy

mm = 2.28 × 10−4m, where
kx,B = 0.6k0. (d)-(f) The same plots, but considering χxx

ee and χzz
ee, with χxx

ee = 4.44× 10−4m
and χzz

ee = 6.34 × 10−4m.

In this case, setting |S11 | = 0 in (14) and solving for χzz
ee, we find

χzz
ee =

4k0(k2kz1η0η1 − k1kz2η0η2 + jk0kz1kz2η1η2 χ
xx
ee )

k2
xη0 [4jk1k2η0 + k0(k2kz1η1 − k1kz2η2)χxx

ee ]
(18)

for which the real and imaginary parts are plotted in Fig. 6(d) and (e). In this case, designing for
kB = 0.6k0 results in the reflection plotted in Fig. 6(f). Compared to the use of χyy

mm and χxx
ee , the

use of χzz
ee results in a much sharper reflection minimum around the Brewster angle.

Finally, we consider the use of quadrupolar susceptibilities. Using the meta-atom of Fig. 3(c),
many terms are possible. To demonstrate the versatility of these terms, we will apply two in
particular: Syzzx

me and χxy
em. Note that we assume all other terms but these two are negligible and

we leave the design of such a metasurface, which is not a trivial task, as future work. This time,
setting |S11 | = 0 in (15) and solving for χxy

em, one finds

χ
xy
em =

(︁
2k2

x − k2
0
)︁
Syzzx

me

4k2
0

−

(︂√︁
k2kz1η1 ±

√︁
k1kz2η2

)︂2

2jk0 (k2kz1η1 − k1kz2η2) , (19)

where, noting that the last term is imaginary, then χxy
em will be imaginary if Syzzx

me is imaginary.
This corresponds to a lossless metasurface [29], and so we have two solutions. These are plotted
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in Fig. 7(a) and (b). To design for kx,B = 0.6k0, we first arbitrarily select χxy
em = 2j · 10−5, which is

indicated with black contours. Then, Syzzx
me is selected using the first solution in Fig. 7(a). However,

there are two more angles predicted by the second solution, resulting into three Brewster angles.
The scattered power is plotted in Fig. 7(c) and (d), corroborating the presence of three Brewster
angles. Note that the minimum in reflection at 0.6k0 is very sharp, which contrasts with the
overall behavior of the metasurface that is mostly transparent over the entire angular spectrum.
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Fig. 7. By using quadrupolar susceptibilities, multiple Brewester angles are predicted, with
(19) having two solutions for χxy

em plotted in (a) and (b). Both susceptibilities χxy
em and Syzzx

me
are purely imaginary; i.e. lossless, and the black contours correspond to χxy

em = 2.00j×10−5.
Next, selecting Syzzx

me = −0.285j×10−3 m and χxy
em = 2.00j×10−5 m, the transmitted and

reflected power is plotted in (c) and (d). Note: ϵ1 = 1, ϵ2 = 2 and λ0 = c0/(300THz).

5.2. Engineered angular reflection (“anti-Brewster”)

To further demonstrate the capabilities of the proposed modeling approach for controlling the
angular scattering response of a multipolar metasurface, we shall now consider the case of
engineered angular reflection for which the transmittance goes to zero.

In addition to suppressing reflection at a particular angle to control the Brewster angle, it is
possible to suppress transmission to create what we will call an “anti-Brewster” angle. We will
consider the same sets of susceptibilities as in Section 5. Starting with χxx

ee and χyy
mm in (15),

setting |S21 | = 0, and solving for the susceptibilities,

χxx
ee = − 4

k2
0 χ

yy
mm

, (20)
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which has no dependence on the angle of incidence (kx, kz,1, or kz,2). Thus, if (20) is satisfied, the
metasurface will behave as a mirror with complete reflection, rather than the desired refection at
a particular angle of incidence.

Thus, we again consider χzz
ee, due to its angular behavior, along with χxx

ee . Then, the condition
for complete reflection is

χxx
ee = − 4

k2
x χ

zz
ee

, (21)

which has a dependence on kx. Designing for kx = 0.6k0, Fig. 8(a) shows the reflected and
transmitted powers, verifying the “anti-Brewster” behavior.

(c) First solution to (22) (d) Second solution to (22) (e)
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Fig. 8. (a) An anti-Brewster angle is engineered at kx = 0.6k0 using χxx
ee = −4.44×10−4m and

χzz
ee = 6.34×10−4m, predicted using (21). Next, (c)-(e) show two solutions of (22), predicting

two anti-Brewster angles. These are plotted in (b), for a case where Syzzx
me = −0.285j×10−3

m and χxy
em = 2.00j×10−5 m. Note: ϵ1 = 1, ϵ2 = 2 and λ0 = c0/(300THz).

Finally, we consider quadrupolar susceptibilities. With Syzzx
me and χxy

em, there are two solutions
for suppressed transmission:

χ
xy
em =

(︁
2k2

x − k2
0
)︁
Syzzx

me

4k2
0

± 1
2jk0

, (22)

which are plotted in Fig. 8(c) and (d). The two solutions are very close together, as seen in
the magnified plot of Fig. 8(e). Using the same susceptibilities as in Fig. 7, the reflected and
transmitted powers are plotted in Fig. 8(b). We see that the very sharp Brewster angle is straddled
by two close “anti-Brewster” angles. Thus, this combination of susceptibilities allows for 3
Brewster angles and 2 “anti-Brewster” angles.
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Overall, we see that by adding more susceptibility terms – and terms relating to quadrupoles
and spatial disperion in particular – it is possible to have increasing control over the angular
scattering response. While we have highlighted a few of the possible terms in the general
hypersusceptibity matrix (8), other susceptibilities could be considered for even more intricate
control, such as more Brewster or “anti-Brewster” angles.

6. Conclusion

In summary, we have derived GSTCs which include spatial dispersion and are valid for
metasurfaces in non-homogeneous environments, such as for practical metasurfaces fabricated
on a substrate. We have shown how the susceptiblity tensor properties (symmetries, reciprocity,
tracelessness) and spatial symmetries of the metasurface can be used to simplify the susceptibility
tensors. Furthermore, we demonstrated how the new hyper-susceptibility terms can be used to
produce multiple Brewster and “anti-Brewster” angles. For example, with tuning of χxy

em and
Syzzx

me it is possible to achieve 3 Brewster angles and 2 “anti-Brewster” angles. We expect this
work to provide a fundamental advance for Fourier-domain signal processing, where tuning of
the angular response is paramount.
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