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Crossing of the Branch Cut: The Topological Origin of a
Universal 2𝝅-Phase Retardation in Non-Hermitian
Metasurfaces

Rémi Colom,* Elena Mikheeva, Karim Achouri, Jesus Zuniga-Perez, Nicolas Bonod,
Olivier J. F. Martin, Sven Burger, and Patrice Genevet*

Full wavefront control by photonic components requires that the spatial phase
modulation on an incoming optical beam ranges from 0 to 2𝝅. Because of
their radiative coupling to the environment, all optical components are
intrinsically non-Hermitian systems, often described by reflection and
transmission matrices with complex eigenfrequencies. Here, it is shown that
parity or time symmetry breaking—either explicit or spontaneous—moves the
position of zero singularities of the reflection or transmission matrices from
the real axis to the upper part of the complex frequency plane. A universal 0 to
2𝝅-phase gradient of an output channel as a function of the real frequency
excitation is thus realized whenever the discontinuity branch bridging a zero
and a pole, that is, a pair of singularities, is crossing the real axis. This basic
understanding is applied to engineer electromagnetic fields at interfaces,
including, but not limited to, metasurfaces. Non-Hermitian topological
features associated with exceptional degeneracies or branch cut crossing are
shown to play a surprisingly pivotal role in the design of resonant
photonic systems.

1. Introduction

Over the last decades, the development of artificial materials and
artificial interfaces to address arbitrarily output-from-input sig-
nals has considerably modernized the fields of optics and optical
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design. A particularly impressive amount
of research in the field of metamaterials
has been devoted to the design and real-
ization of ultra-thin artificial optical sur-
faces for wavefront engineering and con-
trol. These optical surfaces, also dubbed
metasurfaces, rely on the coherent scat-
tering of light by a sizable distribution
of nanoscatterers of various shapes and
material compositions. The list of opti-
cal effects achieved using metasurfaces
is extensive, ranging from anomalous re-
flection and refraction,[1–8] all the way
to the design of utterly complex vecto-
rial holographic surfaces.[9–15] In prac-
tice, light control is achieved by vary-
ing the geometries of adjacent elements
so as to provide spatially-varying phase
retardation on the incoming wavefront.
The realization of ultrathin optical com-
ponents capable of arbitrarily shaping the

wavefront of a light beam to create metalenses, metadeflectors,
metaholograms, metasurfaces generating optical vortices, and so
on[16–19], requires full 2𝜋 phase modulation. It is thus necessary
to identify which are the leading physical mechanisms of inter-
est to achieve full 2𝜋 phase delay at nanoscale for a desired re-
flection or transmission channel. The physical mechanisms of
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interest for the design of these phase building blocks include the
Pancharatnam–Berry phase in anisotropic nanoparticles,[20,21] ef-
fective index waveguide modes in nanopillars,[2] and the 2𝜋-
phase modulation associated with resonant scattering of Mie
nanoparticles or plasmonic metasurface. Yet not all resonant
metasurfaces can provide a modulation spanning the whole 2𝜋
range withmanymetasurfaces providing only a 𝜋 phase accumu-
lation. Therefore, there is a need for a general condition which
would simplify the identification of metasurfaces spanning the
full 2𝜋 range. Ultimately, and despite all the efforts in under-
standing which physical mechanisms are leading to optimal de-
signs, the most advanced patterns often require witless numeri-
cal parameter searches.
Here, we identify the link between the full 2𝜋-phase retarda-

tion commonly used for designing metasurfaces and the rela-
tive spectral positions of topological singularities of the meta-
surface response functions. These topological singularities man-
ifest as zero-pole pairs in the complex-frequency plane. Relying
on the work realized in refs. [22, 23] in the framework of the S-
matrix, we report on a sufficient condition on the relative posi-
tions of these zero-pole pairs on selected reflection or transmis-
sion channels to achieve the whole [0, 2𝜋] phase gradient needed
for wavefront shaping metasurfaces working either in reflection
or in transmission. We also exploit these insights to explain
the physical mechanism behind existing phase-gradient reso-
nant metasurface designs, in particular the dielectric Huygens
metasurfaces.[24] Resonant-phase metasurfaces are designed to
connect N input Ein-modes with N output Eout-modes. They be-
have as regular linear open wave systems mathematically de-
scribed by N × N response matrices F(𝜔) such that, Eout = F(𝜔) ⋅
Ein,

[25,26] where F(𝜔) represents either the S-matrix, the reflection
matrixR or the transmissionmatrixT.[27] In the context of diffrac-
tion gratings, analysis based on zeros and poles of the S-matrix
coefficients was used to determine the origin of such phenom-
ena as Wood’s anomalies or total absorption of light.[28–31] Ze-
ros and poles of response matrices or functions behave as phase
singularities around which the phase is spiraling in a vortex-like
way.[22,23] Metasurfaces, likemost optical devices, are intrinsically
non-Hermitian devices, suffering from scattering losses and po-
tentially from intrinsic loss or gain. Therefore, their phase sin-
gularities generally occur in the complex frequency plane. Sin-
gularities have long been known to play an important role in
optics.[32–35] Here, we show how phase singularities occurring in
the complex plane greatly influence the optical response of reso-
nant metasurfaces. More precisely, we show that 2𝜋 phase accu-
mulation needed for wavefront engineering of reflected or trans-
mitted output channel has a deep topological origin. It requires
two complementary singularities, known as poles and zeros, to
be disposed in the complex frequency plane on either side of the
real axis. This way, the branch-cut discontinuity bridging these
two singularities crosses the real axis, providing 2𝜋 phase accu-
mulation as a function of the real frequency excitation. Note that
this result has important implications for the design of metasur-
faces since structures displaying a 2𝜋 phase accumulation as a
function of the frequency is often used as a starting point to re-
alize phase-gradient metasurfaces. We demonstrate that one can
rely on symmetry-breaking in order to have two singularities of
the same pair located on each side of the real axis which induces
2𝜋 circulation for any path in the complex plane encircling a sin-

gularity.We propose two approaches inducing parity or time sym-
metry breaking to move the zeros from the real axis to the upper
part of the complex plane.
The first solution relies on symmetry breaking arguments. We

show that breaking parity-time symmetry by using, for exam-
ple, symmetry breaking in the z-direction (i.e., perpendicular to
the metasurface plane) provides an additional degree of freedom
for designing phase-gradient metasurfaces working in reflection.
This method empowers metasurface’s designers with a new ap-
proach for phase-gradient metasurfaces.
The second solution, which is linked to the regime known as

Huygens metasurfaces,[24] is more subtle as it occurs in symmet-
ric systems featuring spontaneously symmetry-broken states.We
thus show that the physical origin of Huygens metasurfaces is
deeply rooted in topological concepts. Finally, looking at the an-
alytical expressions of metasurface boundary conditions, namely
the “generalized sheet transition conditions” (GSTC), we identi-
fied the symmetry conditions of the electromagnetic modes to be
considered for spontaneous symmetry-breaking.

2. Complex Frequency Analysis and Phase
Integration

We begin our analysis by studying the analytical properties of a
non-Hermitian metasurface represented by a response function
F(𝜔), for example, its reflection R or its transmission T coeffi-
cients. If we assume that F(𝜔) only possesses simple zeros and
poles, it can be expanded using Weierstrass theorem leading to
the following expression[22,23]

F(𝜔) = A exp (iB𝜔)
∞∏

n=−∞

𝜔 − 𝜔z,n

𝜔 − 𝜔p,n
(1)

where A and B are constants depending on the properties of the
metasurface and the considered response function. Similar ex-
pansions were also derived in refs. [36–38] in different contexts.
By definition, the phase is given by Arg(F) = Im(log(F)) and, as
a consequence, zeros and poles of F correspond to logarithmic
branch points at which the phase becomes singular.[39] We refer
to these zeros and poles as singularities throughout this article.
The phase is thus spiraling as vortices around zeros and poles of
F in the same way as the phase of a complex number in ℂ rotates
around the origin of the complex plane.[22] Zeros and poles are
thus analogous to topological defects.[40] While the poles of S, R,
and T are identical and are associated with resonances or quasi-
normal modes solutions of the wave equation, their complex ze-
ros are different and provide insights into the physical effects gov-
erning themetasurface response. In particular, they greatly influ-
ence the real-frequency response of metasurfaces. Zeros of the S-
matrix are complex conjugate of poles for passive lossless meta-
surfaces and can reach the real axis in lossy structures, where
they are linked to perfect coherent absorption.[23,41,42] Zeros of
R and T coefficients are linked to reflectionless and transmis-
sionless states, respectively.[25,26,43] Let us consider a toy-model
F(𝜔) = (𝜔 − 𝜔z)∕(𝜔 − 𝜔p), derived from Equation (1) for A = 1
and B = 0 and considering a single zero–pole pair, featuring only
one zero 𝜔z and one pole 𝜔p located on each side of the real axis,
as indicated by the blue and red regions respectively in Figure 1a.
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Figure 1. Illustration of 2𝜋-phase accumulation concept relying on symmetry-breaking to position zero and pole across the real axis. a) Logarithmic map
of a simplified model of metasurface optical response F(𝜔) = (𝜔 − 𝜔z)∕(𝜔 − 𝜔p) as a function of the real and imaginary parts of the complex frequency,
with 𝜔z and 𝜔p, chosen so as to be in the upper part, and respectively in the lower part, of the complex plane. b) Argument of F(𝜔) in (a) as a function
of the real and imaginary part of the complex frequency featuring phase singularities at the positions of the zero and the pole of F(𝜔). Overlay black
contour Cl encircling the zero used for the complex plane integration. c) Wrapped and unwrapped phase of F(𝜔) as a function of the (real) frequency.
The discontinuity at 𝜔 = 1 results from crossing the branch cut observed in (b). d) Schematics of metasurfaces operating in reflection and respectively
in transmission, supporting time-reversal (T) transmissionless state at frequency 𝜔TZ and respectively parity-time (PT) reflectionless state at frequency
𝜔RZ.

Wedefine as topological charge the quantity q calculated by evalu-
ating the winding number along a counterclockwise contour en-
circling the singularities as [40, 44]

q = 1
2𝜋 ∮Cl

dArg
(
F(𝜔)

)

d𝜔
d𝜔 (2)

equaling to q = +1 for a zero and q = −1 for a pole (see Sup-
porting Information). The phase varies by 2𝜋 around the zeros
and the poles with an opposite sign. As a result, the phase vari-
ation around both is null, see Figure 1b. Moreover, zeros and
poles occur in pairs and are connected by a phase discontinu-
ity, also called branch cut. This can be seen in the panel in Fig-
ure 1b for a single zero–pole pair. In our example, the com-
plex zero and pole values are purposely chosen such that the
branch cut is crossing the real axis. The sufficient condition for
a metasurface to support a 2𝜋 resonant phase accumulation as
a function of the real frequency is thus to possess a zero–pole
pair separated by the real axis, as illustrated in Figure 1c. Af-
ter unwrapping the phase discontinuity resulting from cross-
ing the branch cut at 𝜔 = 1, we obtain a 2𝜋 phase difference
ΔArg(F) = Arg(F(𝜔2)) − Arg(F(𝜔1)) as 𝜔1 → 0 and 𝜔2 → 2 (see

Figure 1c). This link between existence of a zero–pole pair sepa-
rated by the real axis and a phase accumulation of 2𝜋 on the real
axis was also evidenced in refs. [22, 23] for the S-matrix coeffi-
cients. This behavior becomes extremely relevant for wavefront
engineering when it occurs, as shown herein, for R and T-matrix
coefficients, simply because these are responsible for wavefront
modulation in reflection and transmission, respectively. It may
be further understood by using Cauchy’s residue theorem. To
show this, let us computeΔArg(F) = ∫ 𝜔2

𝜔1

dArg(F(𝜔))

d𝜔
d𝜔 by first con-

sidering the integral of dArg(F(𝜔))∕d𝜔 along a contour Cl con-
taining one singularity of charge q such as the one displayed in
Figure 1b. It consists of the line segment [𝜔1,𝜔2] closed by a semi-
circle Csc of radius R in the upper part of the complex plane. As a
consequence, ΔArg(F) = 2𝜋q − ∫Csc dArg(F(𝜔))

d𝜔
d𝜔. However, it can

be shown that ∫Csc dArg(F(𝜔))

d𝜔
d𝜔 → 0 when the radius R increases,

see Supporting Information for the exact case of the transmis-
sion coefficient. This highlights the link between the 2𝜋 phase
accumulation on the real axis and existence of a zero above the
real axis. The range over which the 2𝜋 phase accumulation de-
pends on the decrease of the integral along the Csc contour. For-
tunately, in practice, this integral vanishes fast enough so that the
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Figure 2. Examples of two types of symmetry-breaking inducing a topological singularity to cross the real axis. Each panel displays the Arg(F) as a
function of complex frequency 𝜔, computed by using numerical simulations, insets show the behavior for real frequency and a schematics of the setup.
a,b) Explicit P-symmetry breaking. Parity-time symmetry is preserved by surrounding the metasurface with homogeneous material. The zero sits on the
real axis and the accumulated phase is smaller than 2𝜋 (a). Breaking parity symmetry is realized by modifying the refractive index of the superstrate
(𝜀sup = 2.12) which results in displacing the zero to the upper part of the complex plane, leading to more than 2𝜋 phase accumulation in reflection (b).
c,d) Spontaneous T-symmetry breaking. Two transmissionless states are present on the real axis. As a result, the transmission is modulated from 0 to
1, and poor phase coverage is achieved (c). The system is then driven to the condition known as Huygens metasurfaces by changing the height h of the
building blocks from h = 190 nm in (c) to h = 160 nm in (d). One of the zeros of the two pairs is expelled in the upper complex plane. As a result, the
transmission reaches almost unity and the phase accumulates up to 2𝜋. Spontaneous symmetry breaking happens after the coalescence of zeros at EP.
This process is explained in detail in Figure 3. Note that (d) structural parameters are strictly identical as in (a), indicating that the high transmission
window of HMS results from the existence of an associated reflection zero𝜔RZ. The yellow and pink rectangles in (c) and (d) are indicating the respective
regions denoted by the yellow and pink rectangles in Figure 3a,b.

complete phase accumulation occurs on reasonable frequency
ranges. This will be illustrated by two examples shown in Figure 2
where 2𝜋 phase accumulation occurs over moderate frequency
ranges.
To conclude, the derivations carried out in this section high-

light the topological character of the phase response of metasur-
faces. In particular, we have shown that the phase accumulation
over sufficiently large frequency ranges is quantized and only
takes values of 2𝜋*q where q is the winding number defined by
Equation (2) and is an integer number. We showed that q is ac-
tually counting the number of zero–pole pairs separated by the
real axis (assuming they are all first order phase singularities).
Importantly this disputes the common claim that metasurfaces
supporting an isolated resonance provide a 𝜋 phase variation. The
origin of this discrepancy is linked to the behavior of the phase
when a zero is on the real axis leading to a singular behavior of
the phase associated with a 𝜋 jump.

3. The Link between Symmetries and Positions of
Zero-Point Singularities in the Complex Plane

As a consequence of causality, poles are always restricted to the
lower part of the complex plane in passive systems[36] (the con-
vention used for the time dependence throughout this article is
e−i𝜔t). It is known that in active systems, adding gain can in prin-
ciple move poles upward, fulfilling thereby the lasing condition
when they reach the real axis, but this is not a simple and tech-
nologically relevant solution for metasurfaces. This is, therefore,
outside of the scope of the present study. A question then arises:
how to design a passive structure that can support a phase sin-
gularity in the upper part of the complex plane thus displaying
a 2𝜋 resonant phase accumulation over the real axis? Discard-
ing active systems with complex pole manipulation, we propose
to move zeros to the upper part of the complex plane for the re-
flection or the transmission coefficients. As already mentioned,
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it was shown in refs. [22, 23] that for lossless structures or at
least for structures featuring a small amount of loss, the zero-
pole pairs of the S-matrix coefficients are usually separated by the
real axis. In this case, the S-matrix coefficients display a 2𝜋 phase
accumulation for each of its zero-pole pairs. In a general case of
incoming and outgoing channels on both sides of the metasur-
face, purely incoming and outgoing fields on both sides have to
be generated for observing this effect, which is not practical for
the design of metasurfaces. However, when a mirror is added on
one side, it is possible to engineer the phase in reflection by con-
trolling the position of the reflection zero corresponding to to-
tal absorption in the complex plane. To our knowledge, this was
first pointed out previously for a metallic grating.[45] The behav-
ior of the phase at the vicinity of the total-absorption condition
has actually been exploited in several designs of phase-gradient
metasurfaces.[46–49] More precisely, it has been established that
such metasurfaces possess different modes of operation depend-
ing on the relative values of radiative and absorption losses:[50] i)
when the absorption losses exceed radiative losses, the so-called
overdamped regime, the zero of reflection is located below the
real axis which prevents a full 2𝜋 phase accumulation; ii) when
radiative losses are equal to absorption losses, defined as the criti-
cal coupling regime, the reflection zero is on the real axis causing
a 𝜋 phase discontinuity. Finally, when the radiative losses exceed
the absorption losses, the underdamped regime, and the reflec-
tion zero is above the real axis which leads to a 2𝜋 phase accu-
mulation. In the remaining of this article, we will however focus
on ways to move transmission and reflection zeros to the upper
half of the complex plane when there exists incoming and outgo-
ing channels on both sides of the metasurface. To this end, one
first needs to better understand the constraints imposed on the
locations of the zeros in the complex plane by the symmetries of
the metasurface.

3.1. Transmissionless States of a System Supporting
Time-Reversal Symmetry

Any dielectric metasurface made of lossless material defines a
system which is unitary. A transmissionless state characterized
by a zero on the real axis in the complex frequency plane of the
transmission coefficient thus imposes unity reflection at this fre-
quency. As explained in refs. [25, 26] applying the time-reversal
operator results in the complex conjugation of the frequency, the
permittivities as well as the fields, thereby interchanging incom-
ing and outgoing waves. Considering a metasurface invariant
under the action of the time-reversal operator and possessing
a transmission zero 𝜔TZ, time-reversal symmetry thus imposes
that the metasurface also possesses a complex-conjugated trans-
mission zero at 𝜔∗

TZ. The reason why there is a complex conjuga-
tion of frequency is a consequence of time reversal along with the
fact that the time-dependent fields considered are real valued (for
a detailed derivation see refs. [23, 36]). Similarly, for reflection-
less states, time-reversal symmetry implies that a metasurface
possessing a reflection zero at 𝜔RZ, should support a reflection
zero at the frequency 𝜔

∗
RZ for light impinging from the other

side of the metasurface. This is a consequence of interchang-
ing incoming waves with outgoing waves by the time-reversal
operator.

3.2. Reflectionless States of a System Supporting Parity-Time
Symmetry

The study of the underlying symmetry properties of reflectionless
states necessitates considering inversion symmetry in the prop-
agation direction (z) in addition to time-reversal symmetry.[25] To
understand these symmetry arguments, let us consider a meta-
surface possessing a reflection zero for light impinging from one
given side at a possibly complex-valued frequency 𝜔RZ. If the
metasurface is invariant under time-reversal, then it also pos-
sesses a reflection zero at 𝜔∗

RZ for light impinging on the other
side as illustrated in Figure 1d. In addition, the metasurface may
remain invariant under the symmetry transformation which con-
sists of an inversion with respect to its median plane. Here we
consider the terminology “parity symmetry” to describe the inver-
sion with respect to the propagation direction (z) that transforms
(x, y, z) into (x, y, −z). For the latter condition to be fulfilled, not
only should the permittivity of the substrate 𝜖sub be equal to the
permittivity of the top medium 𝜖sup but the scatterers compos-
ing the metasurface should all remain invariant under this inver-
sion transformation as well (which is the case for the nanocubes
considered in the article). A metasurface invariant under time
reversal and inversion symmetry (equivalent to parity symmetry)
possesses a reflection zero at both frequencies 𝜔RZ and 𝜔

∗
RZ for

light impinging from the same side as shown Figure 1d.

3.3. Real versus Complex-Conjugate Zeros of
Symmetry-Preserving Systems

These two previous paragraphs and the symmetry considerations
discussed for each case indicate that the time-reversed counter-
part of a transmissionless state is also a transmissionless state,
and similarly, the parity-time symmetric of a reflectionless state
is also a reflectionless state, as illustrated in Figure 1d. Upon con-
servation of symmetries, transmission or respectively reflection
zeros should thus occur either at real frequencies (𝜔TZ is real)
or as conjugated pairs in the complex plane (i.e., 𝜔TZ and its
complex-conjugated counterpart are located symmetrically with
respect to the real axis). The former case is generic and could hap-
pen even for a single zero–pole pair, but to understand the latter
case it is necessary to remind that Equation (1) associates one
zero to only one pole. Therefore, symmetry-preserving systems
having conjugated zeros positioned symmetrically with respect
to the real axis imply necessarily the interaction of at least two
zero–pole pairs.

4. Explicit or Spontaneous Symmetry-Breaking
Leading to 2𝝅-Phase Accumulation on the Real
Axis

Given these symmetry constraints, two approaches can be con-
sidered to expel zeros to the upper part of the complex plane:
i) Explicit breaking of a relevant symmetry, which relaxes the
real-value constraint for an isolated zero, thus allowing tomove it
into the complex plane. This solution works both in reflection (by
breaking the P or T-symmetry) and in transmission (by breaking
the T-symmetry) respectively. Reflection zeros can be moved to
the upper part of the complex plane by breaking the reflection
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Figure 3. Huygens metasurfaces: A spontaneous T-symmetry breaking condition. a) Typical transmission spectra of metasurface operating in the Huy-
gens regime as a function of the nanocube height h and real part of the frequency. Two transmissionless states are present in the top and bottom part
of the graph, denoted by the dashed black lines. In the middle, a high transmission window opens, with near-unity transmission region indicated by the
pink rectangle. b) Phase map associated to the transmission map in (a). Superposed are shown the real parts of the frequencies of the transmissionless
states. They merge in two points, at the boundary of the Huygens regime, and remain with the same real frequency in-between. c) Imaginary parts of
the zeros as a function of the nanocube height h. At the boundary of the Huygens regime, the imaginary part of the zero frequencies bifurcates and
symmetrically moves respectively to the upper and lower parts of the complex plane as a consequence of spontaneous symmetry breaking. d) Phase
map as a function of the real and imaginary part of the frequency at the coalescence of zeros hEP1 = 183.58 nm, or EP. At the EP, the circulation of the
phase is equal to 4𝜋. The white rectangle denotes the region highlighted by the white rectangle in (a,b).

symmetry along z or loss engineering. Transmission zeros re-
quire instead the presence of gain to be moved to the upper part
of the complex plane. ii) Spontaneous symmetry breaking: it was
predicted in the previous section that transmission and reflection
zeros of T- and PT-symmetric systems respectively, apart from
being on the real axis, could exist in complex conjugated pairs.
This configuration would result in the existence of a zero in the
upper part of the complex plane and thus lead to a 2𝜋 phase ac-
cumulation over the real axis. This case is of a particular interest
since it is amanifestation of spontaneous symmetry breaking. Let
us illustrate this point for transmissionless states. These states
can formally be considered to be the solutions of an eigenvalue
problem corresponding to Maxwell’s equations with the appro-
priate boundary conditions. When considering lossless (and
passive) materials, this problem possesses time-reversal symme-
try since both Maxwell’s equations and the boundary conditions
of transmissionless states are invariant under time-reversal
transformation. When transmissionless states occur at real fre-
quencies, they are also left invariant by time-reversal symmetry.
However, when two transmissionless states are associated with
complex-conjugated frequencies, neither of these states is left
invariant by time-reversal transformation. In this configuration,

these two transmissionless states break time-reversal symmetry
while the global system preserves it due to the complex conjuga-
tion. This is, in fact, a spontaneous symmetry breaking of states.
This spontaneous symmetry breaking occurs at an exceptional
point (EP) where two transmission zeros become degenerated.
EPs thus induce a transition between real-valued transmission
zeros and pairs of complex-conjugated transmission zeros. In
Section 5, we will show that the transmission properties of
dielectric Huygens metasurfaces are in fact consequences of this
phenomenon. This is illustrated in Figure 3 and in the videos
provided in Supporting Information. These results confirm that
in the region where transmission zeros occur as conjugated
pairs there is indeed a 2𝜋 phase accumulation over the real
axis.[51]

As a result, both scenarios leverage on zeros expelled to the
upper part of the complex plane to achieve a 2𝜋-phase accumu-
lation caused by the branch cut of one zero–pole pair crossing
the real axis. We illustrate both scenarios considering a metasur-
face composed of square nanocubes with a length L = 350 nm
and various heights h, made of a dielectric medium with relative
permittivity 𝜀 = 8.05 (which approximately corresponds to Sb2S3
phase-change material in the amorphous state) arranged in a 2D
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square array with a period p = 500 nm. The substrate relative per-
mittivity is equal to 𝜀sub = 2.25 while the relative permittivity of
the topmediumwill be varied in the following examples. The nu-
merical calculations of the optical response of thesemetasurfaces
for complex-valued frequencies are performed using JCMsuite, a
software based on the finite-element method.[52] For details on
the numerical simulations, please see the Section SIV, Support-
ing Information.

4.1. Explicit Parity-Time Symmetry-Breaking for Phase
Engineering in Reflection

To illustrate the first method, we start by considering a PT-
symmetric version of the Sb2S3 metasurface: it is lossless and
the superstrate is a dielectric material with the same relative per-
mittivity as that of the substrate: 𝜀sub = 𝜀sub = 2.25, making the
overall system invariant under reflection with respect to its me-
dian plane at z = 0. For nanocubes of height 160 nm, it can be
seen in Figure 2a that a reflection zero exists on the real axis
for 𝜔 ≈ 2.15 × 1015 rad s−1. The parity symmetry may be broken
simply by changing the dielectric permittivity of the top mate-
rial to 𝜀sup = 2.12, keeping the substrate permittivity unchanged
and preserving the time-reversal symmetry. The results for an
incident field impinging from the substrate side are shown in
Figure 2b. As a consequence of the parity symmetry breaking,
the reflection zero moves upward. A drastic change of the be-
havior of the reflection coefficient phase in the 𝜔-plane can thus
be observed. The plot of the phase dependency for real frequen-
cies in Figure 2a shows that there is a phase discontinuity when
the zero is located on the real axis. On the other hand, the phase
varies from 0 to beyond 2𝜋 when the zeromoves to the upper part
of the complex plane as seen in Figure 2b. The reason why the
phase accumulation exceeds 2𝜋 is the existence of another zero–
pole pair in the lower part of the complex plane for larger fre-
quencies (see Supporting Information). Transposing this to the
transmission case, that is moving up the transmissionless states,
requires breaking the time-reversal symmetry by adding gain in
the metasurface.[53]

4.2. Spontaneous Symmetry-Breaking at EP for Phase
Engineering in Transmission

Let us now illustrate the second approach. The map of the phase
of the transmission coefficient of the Sb2S3 metasurface for
nanocube height equal to 190 nm is displayed in Figure 2c show-
ing the existence of two zeros on the real axis. Decreasing the
nanocube height to 160 nm, qualitatively modifies the complex
transmission map. The two zeros leave the real axis and form a
conjugated pair below and above the real axis, as shown in Fig-
ure 2d. This is an example of spontaneous time-reversal symme-
try breaking of the states.[54] The existence of a transmission zero
in the upper half of the complex plane provides a full 2𝜋 accumu-
lation over the real axis. It is confirmed by looking at the phase
accumulation as a function of the real frequency on the left bot-
tom plot in Figure 2d. We emphasize that this approach would
work in reflection, where a spontaneous breaking of the P or T-
symmetry would result in the appearance of a conjugated pair of
reflection zeros as well.

4.3. Coalescence of Zeros at the Exceptional Points: the
Topological Origin of the Huygens Metasurfaces

The origin of the spontaneous symmetry breaking observed in
Figure 2d requires the interaction between several zero–pole
pairs. To study this interaction, the height of the consideredmeta-
surface is gradually varied from h = 120 nm to h = 200 nm. The
maps of the amplitude and phase of themetasurface as a function
of the height of the metasurface nanocubes and frequency are
shown in Figure 3a,b. These maps reveal a behavior identical to
the one reported for dielectric Huygens metasurfaces (HMS)[24]

with the existence of a range of heights for which the amplitude of
the transmission coefficient becomes large and the phase covers
the full 2𝜋 interval. The real and imaginary parts of transmission
zeros as a function of the height of the metasurface nanocubes
are shown in Figure 3b,c. Outside the HMS operating region,
the two zeros occur for two different real parts but share the same
imaginary part (which vanishes). However, the two zero real parts
converge close to the boundaries of the HMS operating region
and their real parts become identical at the boundaries of this
region. Their imaginary parts split into two values that are sym-
metric with respect to the real axis. Analyzing the trajectories of
the transmission zeros thus allows us to link the operating re-
gion of HMS occurring between h ≈ 142 nm and h ≈ 183 nm to
the range of heights where transmission zeros exist as a conju-
gated pair in the complex plane, which corresponds to the regime
of spontaneously broken time-reversal symmetry and to the ex-
istence of two transmission zeros degeneracies, also called ex-
ceptional points (EPs),[55] at the boundaries of the HMS operat-
ing region. Avoided crossing of two zero–pole pairs moves one
of the zeros in the upper part of the complex plane satisfying
the sufficient branch cut crossing condition required to achieve
2𝜋 phase coverage. The EPs are found for hEP1 = 183.58 nm and
hEP2 = 142.88 nm. EPs are a type of degeneracies specific to non-
Hermitian systems.[56,57] At the degeneracy, not only do the eigen-
frequencies become identical but their associated eigenstates co-
alesce. In the field ofmetasurfaces, the coalescence of eigenstates
at an EP has been used for the design of polarization-dependent
metasurfaces recently.[58] EP have also been proven useful in
many other applications,[59] in particular for sensing.[60,61] Fig-
ure 3d represents the phase of the transmission coefficient in
the complex frequency plane around EP1. The circulation of the
phase around the zero indicates that it is a second-order zero with
phase winding equal to 4𝜋 leading to a topological charge equal to
q = +2, as expected for an EP. To illustrate how the trajectories of
zeros are linked to the existence of these two EPs, we fit these tra-
jectories with a superposition of a linear dependency with h and
a square root function with two zeros thus featuring two square-
root branch points at the positions of the two EPs

𝜔TZ,EP1∕EP2(h) = a h + b ± c
√(

hEP1 − h
)(
hEP2 − h

)
(3)

the constants a, b, and c are determined by fitting leading to
the following values: a = −2.3465 × 1021 s−1 m−1, b = 2.5317 ×
1015 s−1, and c = 8.462 × 1020 s−1 m−1. The predictions of this fit-
ting model are shown by red and black lines in Figure 3b,c. A
good qualitative agreement between the trajectories of zeros and
the fitting function is found for both the real and imaginary parts.
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For height smaller than 130 nm, a deviation between the fitting
model 𝜔TZ,−(h) and the position of zeros determined by the nu-
merical calculations (black dots and line) is observed. EPs are,
by definition, square-root branch point singularities correspond-
ing to conditions for which the expression under the square-root
sign vanishes. This confirms that spontaneous symmetry break-
ing occurs at exceptional points of transmissionless states. Here
only the height of the nanocubes is tuned to obtain these EPs,
while these are usually found by tuning two parameters. This is
a consequence of the underlying symmetries of the system as
pointed out in ref. [62]. An important consequence of the discov-
ery of this mechanism is that it provides a fundamental expla-
nation of the physics underlying the design of widely used di-
electric Huygens metasurfaces (HMS).[24,63–79] The original un-
derstanding of HMS properties relied exclusively on a spectral
overlap of electric and magnetic dipolar resonances, which was
derived following a theoretical modal analysis of arrays of spher-
ical silicon particles.[80] By carefully studying the trajectories of
zeros, we prove that the boundaries of the 2𝜋 phase change re-
gions correspond to EPs where two transmission zeros become
degenerated. We also computed the electric and magnetic reso-
nance frequencies of this Sb2S3 metasurface by solving eigen-
value problems,[81] and the silicon nanodisk metasurface pro-
posed in ref. [24] (see Supporting Information), and we found
that they never fully coincide. Our results thus shed a differ-
ent light on the behavior of HMS by interpreting it from the
relative positions of zeros and poles of the transmission coeffi-
cients. On the other hand, the behavior ofHMS is usually only ex-
plained by relying on the electric andmagnetic dipolar responses
of dielectric metasurfaces. A connection between these two in-
terpretations will be made in Section 5 by calculating the dipolar
electric and magnetic susceptibilities of the metasurface consid-
ered herein.
Finally, it is worth mentioning that the symmetry considera-

tions used throughout this article were determined for a field im-
pinging on the metasurface at normal incidence. At non-normal
incidence angles, additional spatial symmetries of the metasur-
face play an important role, in particular in-plane symmetries, ex-
plaining the high sensitivity of Huygens metasurfaces response
with respect to the incident angle.[82]

5. Electromagnetic Susceptibility Responses of
Topological Surfaces and Influence of Absorption
Losses

We started in Section 2 with a single zero-pole pair toy-model,
then in Section 4 a numerical calculation for a realistic meta-
surface with several zero–pole pairs and now, in Section 5, we
rely on another description GSTC of the metasurface response
to specifically investigate the trajectories of transmission zeros.
GSTCs are convenient analytical tools to study the metasurface
optical responses. They consist of a zero-thickness sheet support-
ing electric and magnetic dipole responses expressed in terms of
effective surface susceptibilities.[83] In this way, we will be able to
link our previous results obtained using symmetry-based discus-
sions to the electric and magnetic dipole responses of metasur-
faces which are widely used as a design tool. The effective meta-
surface susceptibilities provide simple expressions for the reflec-

tion R or transmission T coefficients. For a normally propagating
incident wave, they read as[83]

R =
2ik(𝜒e − 𝜒m)

(2 − ik𝜒m)(2 − ik𝜒e)
(4a)

T =
4 + 𝜒m𝜒ek

2

(2 − ik𝜒m)(2 − ik𝜒e)
(4b)

where 𝜒e and 𝜒m are the metasurface electric and magnetic
isotropic susceptibilities and k = 𝜔∕c with c being the speed of
light in the metasurface surrounding medium. It is important to
notice that magnetic currents generate odd modes and electric
currents generate even modes as seen in Figure 4a. Here, even
and odd are related to the parity of the solutions with respect to
the median plane of the structure z = 0. Because of modal sym-
metry, previous works on HMS rightfully explained that destruc-
tive interference between these modes on one or the other side
of the metasurface may lead to the appearance of reflection and
transmission zeros, also related to the first and second Kerker
conditions.[24] Here, we particularly focus on transmissionless
states with zero optical backscattered signals, and show that the
GSTC method provides insights on the trajectories of transmis-
sion zeros observed in Figure 3.
The GSTC method yields the expressions provided in Equa-

tions (4a) and (4b) for the reflection and transmission coefficients
where 𝜒e(𝜔) and 𝜒m(𝜔) are the electric and magnetic susceptibil-
ities, represented by the Lorentzian functions

𝜒e∕m(𝜔) =
Ae∕m

(𝜔2
e∕m − 𝜔2) − i𝛾e∕m𝜔

(5)

where Ae∕m is the amplitude, 𝜔e∕m is the resonance frequency,
and 𝛾e∕m is the damping factor. All these quantities are deter-
mined by fitting from numerical calculations. Reflection, trans-
mission zeros, as well as resonances, may then be found by solv-
ing Equations (4a) and (4b). Poles of R and T occur when either
of the two following conditions is fulfilled independently for elec-
tric ormagnetic resonances: 2 − ik𝜒e = 0 and 2 − ik𝜒m = 0.How-
ever, Equations (4a) and (4b) indicate that reflection and respec-
tively transmission zeros occur when 𝜒e = 𝜒m and 4 + 𝜒m𝜒ek

2 =
0. A precise mixed contribution of both electric and magnetic
susceptibilities is therefore required to obtain transmission zeros
which result from the interferences between field distributions of
different symmetries. Substituting Equation (5) into the different
conditions is used to obtain the complex frequencies of transmis-
sion and reflection zeros. The resulting expressions are provided
in Equations (S6) to (S10), Supporting Information for the cases
of damped (𝛾e ≠ 0, 𝛾m ≠ 0) and undamped (𝛾e = 𝛾m = 0) meta-
surfaces. Figure 4c shows the variation of real parts of the trans-
mission zero frequency, the reflection zero frequency, and poles
frequencies as a function of the nanocubes height, h. The plot
Figure 4d andVideo S1, Supporting Information clearly highlight
that the high transmission window, known as Huygens metasur-
face regime, results from pole inversion through avoided cross-
ing of two zero–pole pairs as the geometrical parameters are var-
ied, creating an “opening” near the real axis for the electric zero–
pole pair to pass. From the physical point of view, avoided cross-
ing of the pairs is imposed because the trajectories and velocities
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Figure 4. Symmetries of the electric and magnetic modes and avoided crossing in the presence of intrinsic loss. a) Schematic representation of even
and odd mode interference at a metasurface presenting unidirectional scattering properties. b) Classical representation of Huygens E and M dipolar
interference condition achieving unidirectional scattering in (a). c) Real part of the frequency solutions of GSTCs for transmission zeros, reflection zero
(denoted R-zero) and poles (Pe and Pm) positions as a function of the metasurface height. Avoided crossing of pairs occurs at the frequency where
all curves intersect around Re(𝜔) ≈ 2.17 × 1015(rad s−1). d) Complex-plane positioning of the reflection zero (R-zero), transmission zeros, and E and
M-pole frequencies as a function of the nanocube height (color-coded from blue to red for increasing height). Avoided crossing of the zero–pole pairs
occurs such that the “fastest” pole associated with the electric resonances could cross the zero–pole branch cut of the magnetic mode. e) Same as in
(d) but in the presence of intrinsic losses, that is, in the regime where explicit symmetry breaking of the time-reversal symmetry is realized. Zeros are
expelled from the real axis, but for a similar topological reason as in (d), avoided crossing of the zero–pole branch cut (previously found for time-reversal
symmetric system) still occur, this case without degeneracy of zeros at EPs.

of the poles displacements in the complex plane as a function of
the height strongly differ due to different modal confinements
of the electric and magnetic resonant fields. Poles and zeros are
being connected via the branch cut, that is, the line where the
phase is discontinuous, and therefore pole inversion in the com-
plex plane cannot occur directly by crossing branch cuts. The only
topologically valid solution is to expel the two zeros symmetri-
cally from the real axis, so as to preserve PT-symmetry, in such a
way that the “fastest” pole–zero pair in terms of frequency shift
as a function of geometrical parameters, could cross, to the other
side of the “slow” resonance. Due to larger field confinement,
the electric resonance is more sensitive to structural parameter
changes and it moves faster with respect to the magnetic mode.
Repelling both zeros from the real axis results in a high trans-
mission window while one zero located in the upper part of the
complex plane introduces a 2𝜋-phase accumulation that is of in-
terest for metasurface design. Figure 4e shows the same config-
uration as previously but with additional damping in the GSTC
formula (𝛾e ≠ 0, 𝛾m ≠ 0). In this case, time-reversal symmetry is
broken. It can then be noted that there is no EPs of transmission
zeros. In fact, it is well known that the tuning of two parame-
ters is usually necessary for reaching an EP. The reason why only
one was necessary in the case of the lossless metasurface consid-
ered previously was the underlying symmetry of the system,[62]

in our case time-reversal symmetry. As soon as this symmetry is
broken, two parameters are again needed for reaching an EP. In
Figure 4e, the zeros thus do not merge, but the avoided crossing
behavior remains, leading again to the existence of one zero in
the upper half of the complex plane. As a result, the 2𝜋-phase
accumulation is still observed without zeros degeneracy and EP,
indicating that this approach is robust and would also apply to
metasurfaces made of arbitrary materials.

6. Conclusion

In summary, we have proposed a general method to address
2𝜋 phase accumulation of the reflected or transmitted light at
interfaces. More precisely, a sufficient condition is to have a
metasurface presenting a pair of topological phase singularities
with opposite charges, the so-called zero–pole pair, located in
the complex frequency plane separated by the real axis. In this
case, the branch cut connecting them crosses the real axis, thus
accumulating a 2𝜋 phase as a function of the real frequency. The
identification of nanostructure parameters which could lead to
this behavior is extremely useful for realizing phase-gradient
metasurfaces for optical wavefront control. Relying on symmetry
arguments, two simple solutions to achieve such zero–pole
separation are provided. The first solution consists of explicitly
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breaking the symmetry of the system, either breaking T-
symmetry by adding gain or losses or P-symmetry breaking by,
for example, disposing the metasurface at the interface between
two optically different materials. Symmetry-breaking considera-
tions required for achieving a 2𝜋 resonant phase jump not only
explain existing metasurface designs, but they might also be de-
liberately invoked to achieve unexpected and innovative designs.
In particular, explicit symmetry-breaking in the z-direction (i.e.,
perpendicular to the metasurface plane) appears as a new degree
of freedom to engineer the phase response of metasurfaces in
reflection. The second approach relies on the interaction of two
pairs of zeros and poles. In the absence of loss, it was shown that
the two zeros can coalesce at an exceptional point of transmis-
sionless states and then bifurcate in the complex plane with one
zero thenmoving in the upper part of the complex planewhile the
other moves in the lower part of the complex plane. The 2𝜋 phase
accumulation may survive when loss is added while the EPs van-
ish. This second approach suggests that topological arguments
are at the origin of the physics underlying the design of Huygens
metasurfaces. Our discovery on the existence of EP, or second-
order topological singularity, in such simple and well-studied
Huygens nanostructures could have tremendous applications, in
particular, for enhanced-sensing. Besides, harnessing degenera-
cies of several topological phase singularities and adding other
symmetry-breaking conditions would open new design perspec-
tives in nanophotonics. It reveals also thatHuygensmetasurfaces
are a part of amuchwider class ofmetasurfaces (related to branch
cut crossing), greatly broadening the range of applicability of this
design approach for controlling the phase of light with nanoscale
topologically engineered symmetry-breaking structures.
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