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Multipolar expansions for scattering and optical force calculations
beyond the long wavelength approximation
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We review three different approaches for the calculation of electromagnetic multipoles, namely, the Cartesian
primitive multipoles, the Cartesian irreducible multipoles, and the spherical multipoles. We identify the latter as
the best suited to describe the scattering of electromagnetic radiation, as exemplified for an amorphous silicon
sphere. These multipoles are then used to calculate the optical force acting on semiconductor, dielectric or

metallic particles in a wide wavelength range, from the dipolar regime down to the Mie regime.

DOI: 10.1103/PhysRevB.106.115428

I. INTRODUCTION

Light-matter interactions empower a plethora of natural
phenomena that represent the foundations of a broad variety of
fields such as quantum optics and technologies [1,2], dynamic
light scattering [3,4], microscopy [5,6], and integrated optics
[7,8], to name a few. Unfortunately, a full characterization of
these interactions leads to the formulation of complex field
equations whose analytical solutions are known only for a
few simple cases, notably for the scattering by a spherical
particle [9,10]. To facilitate the analysis of more complex
systems, a multipolar expansion can be employed to gain
physical insights into the underlying light-matter interactions.
The strength of this approach lies in the fact that, by con-
sidering only the first few leading terms of the expansion,
a sufficient convergence of the multipolar solution can be
achieved without the need to undertake the full calculation,
thus greatly simplifying the problem. For this reason, mul-
tipolar expansions have been exploited for a broad variety
of applications including the study and design of radiation
patterns for electromagnetic sources [11,12], the determina-
tion of molecular and atomic polarizabilities [13—15], and the
design and characterization of metasurfaces [16-22]. Other
examples include the scattering of electromagnetic radiation
by an object [23-27] and the generation of optical forces
on a scatterer [23,28-32]. Surprisingly, despite their success
and widespread use, the definition of multipoles is still am-
biguous in the literature, where different strategies to perform
the multipolar expansion have been reported [24,25,30,33,34]
and considerable confusion persists over what formulation to
use when [35]. In this contribution, we revisit and clarify the
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derivation and limitations of three different multipole formu-
lations and apply them to the calculation of the scattering
cross section and optical force for spherical particles with a
broad variety of materials and illumination wavelengths, from
the long-wavelength regime down to the Mie regime.

The paper is divided into three main sections specifically
dealing with the calculations of electromagnetic multipoles—
Sec. II—and, subsequently, their applications to scattering
cross section and optical force calculations, Secs. III and 1V,
respectively. In particular, Sec. IT A introduces the primitive
electromagnetic multipoles as arising from the Taylor expan-
sion of the retarded vector potential—Eq. (5). Section IIB
shows how to derive the irreducible and toroidal multipoles
from the primitive ones (see Fig. 4) and elucidates their
physical interpretation. The spherical multipoles are then in-
troduced in Sec. II C as the coefficients of the decomposition
of the current onto the vector spherical harmonics in momen-
tum space—Eq. (9)—and their connection to the irreducible
and toroidal moments are discussed. Section III presents scat-
tering cross-section calculations performed with these three
formulations of multipoles and compares them to the pre-
dictions of Mie theory, while Sec. IV shows the multipolar
expansion, using the spherical multipoles, of the optical force
acting on particles of different materials.

II. ELECTROMAGNETIC MULTIPOLES

Let us start by considering a material volume V immersed
in vacuum. Under the influence of incoming harmonic elec-
tromagnetic radiation, a current density J(r,¢) is produced
inside the material. This current density is responsible for the
generation of the scattered electric and magnetic fields, from
which all other electromagnetic quantities of interest can be
computed. These fields can be expressed using the retarded
vector potential in the Lorenz gauge,

_po fI(rr = B
A(R,t)_E/v . ()
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where (1 represents the vacuum permeability, R is the vector
to the point of observation, and r is the vector to a point in
the current distribution [36]. We use the MKSA unit system
and assume harmonic fields with an e time dependence
throughout. As already pointed out in the introduction, this
integral representation of A is unpractical for most applica-
tions and a multipolar expansion of the vector potential is
therefore performed to study light-matter interacting systems.
Different strategies can be used to realize this decomposition
and, in particular, different derivations have been proposed
either in Cartesian [25] or spherical [24] coordinates to obtain
a set of tensors, called multipoles, which are used to provide
an approximate description of the scattering system. In this
framework, each multipole represents a specific type of light-
matter interaction, whose contribution can be singled out from
the total scattering response of the system and analyzed thanks
to the multipolar decomposition. To be able to do so we recall
that, as will be shown in Sec. II B, only those tensors that are
irreducible under the SO(3) group transformations, meaning
that they are both symmetric and traceless [36], can be used
to properly model a physical system. This constraint stems
from the physical requirement that any physical property be
conserved under rotations and parity transformations. As a
consequence, we need to be able to express an electromag-
netic multipole in terms of the vector spherical harmonics
functions (VSH), which form the basis for any irreducible rep-
resentation in SO(3). These functions are the eigenfunctions
of the square of the orbital angular-momentum operator and
are plotted in Fig. 1 in the Supplemental Material [37]. In par-
ticular, for the spherically symmetric objects that we consider
here, it must be possible to express each multipole in terms
of only one order [ of either an electric N;,,(R) or magnetic
M;,,(R) VSH defined in Egs. (3) and (4) in the Supplemental
Material [37,38]. Any multipole which does not satisfy this
requirement will not provide a good description of a physical
system and will not carry any real physical meaning. In the
following, we first consider a naive derivation of the Cartesian
multipoles, termed primitive multipoles, and show a strategy
to improve on it by deriving a more accurate formulation
using irreducible and foroidal multipoles. Second, we show
how to compute the spherical multipoles and highlight the
differences between the various formulations. We then apply
these three different multipole formulations to the calculation
of the scattering cross section (SCS) of an amorphous silicon
sphere of radius rp = 100 nm, for which an exact expression
can be found using Mie theory. To this end, Fig. 1 shows the
Mie scattering cross section and its decomposition into the
first six VSH. This decomposition is performed by projecting
the scattered electric far field into the electric and magnetic
VSH, yielding [39]

oo m=Il

EcaR) =Y Y af, Niu(R) + b}, My, (R).  (2)

=1 m=—I

In the above, the a{m and b{l ., terms are the so-called Mie
coefficients and represent the projection of the scattered field
onto the corresponding VSH [40]. Alternatively, the scattered
far field can be decomposed into its multipolar components
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FIG. 1. Mie scattering cross section for an amorphous silicon
sphere of radius ry = 100 nm decomposed into the first three orders
of the vector spherical harmonics. E1, E2, and E3 represent the first
three electric VSH; and similarly for their magnetic counterparts M1,
M?2, and M3. The blue dashed line represents the sum of the six VSH
and agree well with the SCS.

yielding, up to the octupolar order [25],

Escat(R) = 47[60 R

k2 kR 1 ik
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ik k?
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where P, EQ, and EQ are the electric dipole, quadrupole and
octupole Ements,ﬁ, MQ, and MO their magnetic counter-

parts with R = |[R| and n = R/R. Bold quantities represent
first rank tensors (vectors), double-underlined second rank
tensors (matrices), and triple-underlined third rank tensors. €
is the vacuum permittivity, c is the speed of light in vacuum,
and k = w/c = 2n /A, with A being the wavelength of the
incoming radiation. In principle, Eq. (3) is valid for any type
of multipole, and by inserting those of a specific family (prim-
itive, irreducible, or spherical moments), we will be able to
compute different multipolar cross sections and compare them
to the Mie predictions given by Eq. (2), and shown in Fig. 1,
in order to judge what multipole formulation describes the
scattering process best. The calculations are performed using a
surface integral equation approach [41,42] for an x-polarized
plane wave propagating along the z axis of the sphere. The
optical properties of a thin film of amorphous silicon are
used to derive its dielectric function [43]. To this end, we
warn that the dielectric function of thin film might differ from
that of a nanoparticle system such as that considered here
[44,45]. However, this is a common approximation found in
the literature [46], which does not affect the validity of our
analysis as long as the same dielectric functions are used both
in the analytical formula of Mie theory and in those for the
multipoles.
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A. Primitive Cartesian multipoles

To derive the primitive multipoles, the current J(r, ¢ —
IR —r|/c) and the 1/|R —r| term in the integrand of the
expression for the vector potential A in Eq. (1) are expanded
as a Taylor series for |r| < |R|, i.e., [r| — 0. The advantage
of this method lies in the fact that, for arbitrarily small sources,
only the first few terms of the Taylor series need to be consid-
ered to completely describe the system, greatly simplifying
the calculations. However, as the scatterer size increases, more
and more terms are needed to correctly model the interaction
and their computation becomes increasingly cumbersome. For
the current, this expansion yields [36]

R—r]\ ", IR
J(r,t— . )_Zn!VJ(r,t - >

n=0

r=0

“

and the potential, after further manipulation with the conti-
nuity equation [40], can be rewritten as (see Sec. 4.1.2 in
Ref. [36])

o0

—1)-! 1. 1
AR, 1) = Z_;z) Z %v’—l[ﬁg%) +V x §¥P(r):|,

®

where the dot means a time derivative with respectto . = ¢ —
R/c. We see that two new quantities appear in the expression

of A: the primitive electric multipoles P” and the primitive
.l

magnetic multipoles M”. This new notation for the multipoles

Wi
indicates a tensor of rank /. The general definitions of these
multipoles are given in Eqs. (6) and (7) in the Supplemental
Material, while Table I in the Supplemental Material provides
specific expressions for the first three electric and magnetic
multipoles [37].

Let us first point out that electric and magnetic moments
of the same order [/ arise at different orders n of the Tay-
lor expansion, in such a way that, for example, for n =0
one recovers the first electric multipole, while for » = 1 one
obtains the second electric multipole and the first magnetic
one [25]. As a consequence, P” is the first multipole arising
from the Taylor series and is the leading term describing
the interacting light-matter system. By inserting P = P” in
Eq. (3), it is possible to calculate the contribution of the first
electric moment to the scattered field intensity, whose three-
dimensional (3D) radiation pattern is plotted in Fig. 2(a). We
can clearly see here that this contribution is analogous to that
of an oscillating electric dipole along the x axis and described
by Ni; in Eq. (2). Therefore P’ takes the name of electric
dipole. Similarly, M? is described by M;_; and is called
the magnetic dipole. Interestingly, however, if we consider
higher-order multipoles, their radiation patterns do not present
the typical distributions of the corresponding / =2 and [ = 3
VSH. In particular, we see that the intensity patterns of the
magnetic quadrupole and octupole seem to present charac-
teristic radiation features of lower-order multipoles such as
the electric dipole and quadrupole, respectively. It is therefore
clear that, while the expansions outlined in Egs. (4) and (5)
are mathematically correct and allow us to derive the primitive

multipoles, they do not carry any physical meaning because it
is not possible to express them in terms of the corresponding
VSH. The same conclusion can be reached when considering
Eq. (6) and Table I in the Supplemental Material, where it
is shown that the primitive electric multipoles are not irre-
ducible because they are fully symmetric but, in general, not
traceless [37]. This is why the primitive electric quadrupole
is not a physically appropriate tensor, even though it radiates
as a proper quadrupolar VSH. The primitive magnetic multi-
poles, on the other hand, are neither symmetric nor traceless
[see Eq. (7) and Table I in the Supplemental Material [37]],
with the magnetic quadrupole being an exception because it
is traceless but not symmetric. A proper physical descrip-
tion of the scattering system can therefore be achieved by
detracing the primitive electric multipoles and symmetrizing
and detracing the magnetic ones in order to obtain a set of
irreducible tensors able to describe our system. Before tack-
ling this task let us point out that, since the properties of
symmetry and tracelessness are not defined for first-order ten-
sors (vectors), the primitive dipole moments can already carry
some definite physical meaning: they represent the response
of the system when the scatterer can be modeled as a linearly
oscillating pair of charges (electric dipole) or as a closed-loop
circular current (magnetic dipole).

B. Irreducible and toroidal Cartesian multipoles

The symmetrization and detracing procedure to extract the
irreducible Cartesian multipoles from the primitive ones has
already been described in detail elsewhere [25,36] and we
will not dive too much into the details. It is important to note,
however, that this procedure allows the decomposition of a
primitive moment A” into

..l

AP :AI +AX7 (6)
W] W] “p

where A’ is the irreducible representation of A”, and A is the

-l .1 -p
residual left after the symmetrization and detracing procedure,
which will generally have a lower rank than the primitive and
irreducible moments, i.e., p < [. Figure 3 shows the radiation
patterns of the irreducible moments and reveals how, thanks
to their irreducibility, these multipoles radiate with the ex-
pected dipolar, quadrupolar, and octupolar behavior proper
of the /=1, 1=2, and / =3 VSH. As for the primitive
multipoles, we also provide in Table II in the Supplemental
Material the definition of the first few irreducible moments
[37]. We note that, as already mentioned, the irreducible
electric and magnetic dipoles are the same as the primitive
ones.

After deriving physically valid irreducible multipoles, the
question arises now as to how to deal with the residuals
produced by the symmetrization and detracing procedure.
Surprisingly, as shown in Fig. 4 for the n = 2 case, it is found
that these tensors have well-defined far-field distributions
analogous to those of the irreducible multipoles. In particular,
when detracing and symmetrizing a primitive multipole of
rank [, its residual will radiate as a multipole of lower rank
p, meaning that the primitive multipoles are not really “pure”
moments but contain contributions from different orders of
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(a)
(c)
(e)

y X
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FIG. 2. 3D distribution of the normalized scattered intensity of the primitive electric (left) and magnetic (right) multipoles for & = 400 nm
illumination. (a), (b) Dipole moments, where the black arrows indicate the direction of the electric field at the selected points. (c),

(d) Quadrupole moments. (e), (f) Octupole moments.

the VSH and are therefore not completely independent. We
explicitly show this counterintuitive behavior for a traceless
but not symmetric matrix representing a fictitious primitive
magnetic quadrupole:

2 5 4
AP=[7 1 38| 7
- 311 -3

This multipole, being nonsymmetric, is noninvariant under
rotation transformations and is therefore still reducible. Its
irreducible form can be derived by decomposing it into its
symmetric and antisymmetric parts (I represents the identity

matrix):
1 1
P _ P P P P
A" = S (A5 +AR) + S (A7 — A7)
(4 12T [0 -2 1
=12 2 19]l+=[2 o =3
2\7 19 =6} 2\-1 3 o
(4 127 | 3
=—|12 2 19]|+=-Ix|1]|=A"+A%, @8
2\7 19 -6} 2 2] =

of which the latter, representing the residual after the sym-
metrization procedure, depends on only three parameters and
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FIG. 3. 3D distribution of the normalized scattered intensity of the irreducible electric (left) and magnetic (right) multipoles for A = 400 nm
illumination. (a), (b) Dipole moments. (c), (d) Quadrupole moments. (e), (f) Octupole moments.

therefore behaves like a lower rank tensor, i.e., a dipole,
and is the first contribution to the electric toroidal dipole, as
shown in Fig. 4. The former part, on the other hand, is now
a traceless and symmetric matrix representing the fictitious
irreducible magnetic quadrupole. This explicitly shows the
limitation of Cartesian multipoles: it is impossible to com-
pletely describe, for example, the far-field electric dipolar
response of a system by only considering the electric-dipole
moment: a complete and exact description of such a sys-
tem needs to take into account the residuals of all the other
high-order multipoles, which is impractical and defies the
scope of employing the multipolar expansion. However, by
only considering the first few orders of the Taylor expansion,
the first additional contributions to the low-order multipoles
can be derived [25]. This is done by combining the resid-
uals left after the derivation of the irreducible moments of

same order n, generating the toroidal multipoles, as shown
in Fig. 4 for the first toroidal electric dipole T%. This arises
by a combination of the residuals of the primitive electric
octupole and primitive magnetic quadrupole (n = 2), which
radiate as pure electric dipoles and therefore provide a first
correction to P/, which is now written as P = P/ + ikT? /c
[25]. Here, the factor ik/c takes into account the phase dif-
ference between P/ and Tf. The superscript P indicates a
toroidal moment of the electric kind, as opposed, for example,
to TV which is the first toroidal magnetic dipole. Similarly, it
can be shown that the residuals of the primitive electric 32-
pole and magnetic hexadecapole (n = 4) combine to generate
the second toroidal electric dipole T‘; , which contributes to
the total electric dipole as P = P/ + ikT! /c + ik*T} /c [25].
Higher-order multipoles also produce in principle additional
electric toroidal dipole terms, together with higher-order
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Primitive magnetic quadrupole

Irreducible
magnetic quadrupole

Residuals

Primitive electric octupole

,J,

|

FIG. 4. Normalized intensity radiation patterns showing the decomposition of the primitive magnetic quadrupole and primitive electric
octupole, arising at the second order of the Taylor series, into their irreducible and residual parts, according to Eq. (6). Their residuals are then

combined to generate the first toroidal electric dipole.

electric and magnetic toroidal moments, as shown in Table
IIT in the Supplemental Information [37]. It is thus clear
that these toroidal moments act as higher-order corrections
to the irreducible multipoles and are therefore specifically
relevant at high-energy illuminations. Physically, they repre-
sent different charge and current configurations that radiate as
normal irreducible moments, from which they are therefore
virtually indistinguishable in the far field [47]. We point out
that a complete agreement in the literature as to whether
the toroidal multipoles really represent a new independent
multipole family, together with the irreducible electric and
magnetic ones, has not yet been reached [33,36,47,48], and
we will come back to this issue in the next section. Regardless
of this fact, they represent real nontrivial charge and current
configurations in the source which contribute to the total far-
field emission, and need therefore to be considered for a full
representation of the scattering response. '

'Let us point out that a complete description of a radiating source
needs to also consider the mean square radii of the multipoles, which

We have now reviewed a physically appropriate defini-
tion of the electromagnetic multipoles, where each moment
is not just simply a term in the Taylor series of the po-
tential but carries some clear and definite physical meaning
and can therefore be used to properly model field-matter
interactions. For example, these moments can be employed to
interpret nonradiating charge and current distributions, termed
“anapole” states [50], as simply arising from the destructive
interference between irreducible and toroidal moments of the
same kind [51,52]. On the other hand, as we have already
discussed, it is impractical to use this formulation to capture
the full scattering response arising at a certain order because in
principle infinite toroidal corrections would need to be added
to the corresponding irreducible moment. This represents a
significant limitation, especially when several modes are ex-
cited in the scatterer and the first known toroidal terms do

describe charge and current configurations with nontrivial radial
distributions but a similar radiation pattern as their parent multipoles
[49].
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not provide an adequate correction to the irreducible response.
Luckily, this shortcoming can be overcome by employing the
spherical multipoles discussed in the next section.

C. Spherical multipoles

The key difference between the derivation of the Cartesian
and spherical multipoles is that, as one might guess, the latter
are first derived in spherical coordinates and only later con-
verted into the Cartesian system for ease of use. An advantage
of this approach lies in the fact that the as-derived spherical
moments are already irreducible [40] and one does not need
to go through the whole symmetrization and detracing pro-
cedure, as for the Cartesian multipoles, to obtain physically
relevant moments. Moreover, their accuracy does not depend
on the scatterer size and they can therefore be used to model
light-matter interactions for arbitrarily large spherically sym-
metric sources.

To derive the spherical multipoles, a Fourier transform of
the current is first performed to derive its energy-momentum

components J, (k). Of these, only those components J, (k)
defined on the spherical shell domain satisfying k| = w/c
radiate transverse electromagnetic fields outside the source
[53,54] and are therefore of interest for the following deriva-
tion. These components, being defined on a spherical shell,
can be readily projected onto the orthonormal basis formed by
the VSH Z;,,(k), X;,,(k), and W,,,(k) in momentum space,
defined in Eq. (5) in the Supplemental Material [37]. This
yields [54]

Jo(k) = Z ap, Zim(K) + b, Xim (k) + ¢, Win(k),  (9)
Im

where the a}, , by, , and ¢}, coefficients in this last expression
fully describe the radiating source and are therefore called
the spherical moments. It is instructive now to study the
connection between these multipoles and the Mie coefficients
a{m and b{m in Eq. (2). We first note that the coefficients

¢y, which describe the longitudinal degrees of freedom of

Jo(k), do not radiate outside the source where only transverse

fields are present [33]. As such, one can say that C‘]fm = 0 and,

indeed, no c{m coefficients are present in the expression of the

scattered field in Eq. (2). As for the other terms, one can use
the properties of the Fourier transform to show that Z;, (k)
and X;,,(k) are associated with N;,,,(R) and M;,,,(R), in such
a way that the current is now expressed into the same basis as
the scattered field. Indeed, the af), b} coefficients represent
the projection of the current onto the electric and magnetic
VSH. As a consequence, one can say that the spherical mul-
tipole moments af), and b, generate the corresponding Mie
coefficients a{m and b{, .» t0 which they are indeed related
through some simple relations [39]. Thanks to this one-to-one
correspondence, which we stress holds only in local media,?

2We define a local medium as being isotropic, achiral, and recip-
rocal. Such a medium accounts for virtually all of the environments
where the multipolar decomposition has been theoretically and ex-
perimentally employed. On the other hand, in particles smaller than

ap,, and b}y, represent the fotal current in the source that con-
tributes to the corresponding VSH. As a consequence the field
radiated by a spherical multipole, calculated with the help of
Eq. (3), will exactly match the one projected onto the corre-
sponding VSH calculated with Eq. (2). For this reason, the
spherical multipoles have been sometimes called the “exact”
multipoles, but we stress the fact that this nomenclature only
stems from their property of exactly matching the predictions
of Mie theory, rather than from their ability to exactly describe
a scattering system. For instance, in systems lacking spheri-
cal symmetry, different multipoles are required to completely
characterize the scattering response at a particular order and
therefore the irreducible multipoles may show a better con-
vergence since, for example, af,, does not represent the full
electric dipolar response of the scatterer anymore [35,38].
On the other hand, this holds true for spherical particles,
where af,, represents the total electric dipolar response of
the scatterer and where there is no need anymore to consider
additional toroidal corrections.> A downside of this is that it
is not possible, when employing this formalism, to distinguish
different current configurations with similar radiating prop-
erties. However, by expanding the spherical Bessel functions
Ji(kr) in the definition of the spherical moments [cf. Eq. (9) in
the Supplemental Material [37]], it is possible to recover the
irreducible multipoles and all the relative toroidal corrections
[54]. We show this for the case of the spherical electric dipole
[24]:

s 2
PS = i/ {Jajo(kr)dV + k—/[3(r-J)ra
w Jy 2 Vv

Jatkr)

)
r“Jyl kr)?

dV}, (10)

of which we write an approximate expression valid for scat-
terers smaller than the wavelength of the incoming field. This
implies kr < 1 and, consequently, jo(kr) >~ 1 — (kr)?/6 and
Jo(kr) = (kr)?/15, yielding [24]

¢ ik 1 ’
P~ | pav+Z | —(@- Dry — 220,14V
w Jy c Jy 10

1, ik p
=P, +—T . an

¢ la
Clearly, in the dipolar approximation, the spherical electric
dipole can be decomposed into the irreducible electric dipole
together with its first toroidal correction. Moreover, by con-
sidering more terms in the expansion of the spherical Bessel
functions, higher-order toroidal corrections can also be de-
rived [54], showing how the spherical multipoles provide a
unified description of the effects of both the irreducible and
toroidal moments. As a consequence, it is clear now that the

10 nm, nonlocality of the particle medium has indeed been shown to
affect its optical properties [55] and might therefore limit the validity
of the local multipolar decompositions studied here.

3Since their radiation properties are similar to those of their parent
multipoles, the contributions of the mean square radii of the Carte-
sian multipoles to the total scattered radiation are also completely
accounted for by the spherical multipoles.
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FIG. 5. (top panel) Scattering cross section for an amorphous
silicon sphere of radius 7y = 100 nm calculated with the exact Mie
theory (full black line) and with the electric and magnetic primitive,
irreducible, and spherical moments (dashed lines) up to the octupolar
order. The irreducible moments are corrected with the first known
toroidal multipoles [25]. (bottom panel) Relative error of the multi-
polar cross sections with respect to the exact Mie solution, calculated
as 100 x |SCSMie - SCSmullipolesl/SCSMie~

toroidal multipoles, rather than being an independent multi-
pole family, are simply a subset of the spherical moments
and act as high-order corrections to their long-wavelength
approximate forms.

As for the Cartesian multipoles, we provide in Table IV
of the Supplemental Material the definition of the first three
orders of spherical multipoles [37].

III. MULTIPOLAR SCATTERING CROSS-SECTION
CALCULATIONS

After reviewing the derivation of these three different mul-
tipoles formulations, we can now insert their expressions (see
Tables I- IV in the Supplemental Material [37]) into Eq. (3) to
compute the different multipolar scattering cross sections and
compare them to the exact one given by Mie theory in Eq. (2).
The results are shown in Fig. 5 for the first three orders of
electric and magnetic multipoles as a function of the size pa-
rameter krg = 2mwro/X. This parameter represents the relative

size of the scatterer with respect to the incoming wavelength
and provides a general way to study the multipolar response
of our system, irrespective of its size. For example, if we
increased (or shrank) ry by 10 times, the multipolar response
of the particle would not change provided that A were also
increased (or shrunk) by the same amount. Specifically, for
the 7y = 100 nm case analyzed here, kry = 1 corresponds for
example to A = 628 nm and krp = 3 to A = 209 nm.

As for Fig. 5, the scattering cross section calculated with
the primitive multipoles cannot evidently approximate the
exact one for krg > 1, or A < 2mwrg 2>~ 6r¢. This confirms
the fact that the primitive moments do not provide a good
representation of the scattering system. The agreement at
kro < 1, where the electric and magnetic dipolar responses
are dominant (see Figs. 1 and 6), is simply caused by the
fact that the primitive dipole moments are the same as the
irreducible ones. On the other hand, the use of irreducible
moments, corrected with the first known toroidal multipoles,4
is able to improve the agreement at larger size parameters
until roughly kry = 2, or A = mry = 3rp. In principle, the in-
clusion of additional toroidal corrections can further improve
the results at smaller wavelengths but, as already discussed,
the derivation of higher-order toroidal multipoles becomes
increasingly difficult and is therefore impractical. The best
results are clearly obtained when employing the spherical
multipoles, which give exact results across the entire wave-
length range considered. We stress the fact that the small
deviation appearing for kro > 3 is not due to an imprecise
moments definition but rather to the decision of leaving out
the contributions from higher-order multipoles, as confirmed
by the vector spherical harmonics decomposition of the Mie
scattering cross section shown in Fig. 1. Note that this de-
viation reaches a maximum of 6% even at these high large
parameters, while it is virtually zero anywhere else. We fur-
ther provide in Fig. 6 the single multipolar cross sections for
the different multipole formulations. Again we see that, at
least for low-order multipoles, primitive Cartesian moments
are able to properly describe the system only up to kry = 1
where the dipolar responses are dominant, while the corrected
irreducible moments can be used up to kry = 2. On the other
hand, the spherical multipoles provide an exact description of
the system as their scattered fields perfectly match the VSH of
the corresponding order. The deviation shown at small values
of the SCS in Figs. 6(e)-6(f) can be attributed to numerical
errors.

IV. MULTIPOLAR OPTICAL FORCE CALCULATIONS

After identifying the spherical multipoles as those that
better describe the electromagnetic scattering for spherical
particles, let us now apply these multipoles to study the optical

4The first toroidal moment is known for all multipoles up to the
electric octupole and magnetic quadrupole. For the electric dipole,
the second toroidal electric moment has also been derived while,
to the best of our knowledge, no expressions exist for the toroidal
magnetic octupole [25]. If needed, additional toroidal moments can
be derived from the Taylor expansion of the relative spherical multi-
poles, as already pointed out before.
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FIG. 6. First three orders of electric (left) and magnetic (right) cross sections calculated using the vector spherical harmonics decomposition
(full black lines) and the three different multipolar formulations (dashed lines) using Eq. (3). (a), (b) Dipolar cross sections. (c¢), (d) Quadrupolar

cross sections. (e), (f) Octupolar cross sections.

force exerted on such particles. We compare the exact
time-averaged force calculated using Maxwell’s stress tensor
(MST) [56] to the multipolar one Fio; = F + Fj¢ calculated
with the first three orders of electric and magnetic spherical
moments, which we indicate here with the superscript S. This
force is the sum of a term F arising from the interaction

1

between the multipoles and the incoming fields:
F = IRe(P® - VE*) + JRe(M® - VB*)
+ 1Re(EQ® : VVE®) 4+ 1Re(MQ® : VVB¥)
+ {5Re(EQ°:VVVE®) + LRe(MO*:VVVB), (12)
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FIG. 7. Optical force acting on a sphere of radius ry = 100 nm made of (a) amorphous silicon, (b) glass (n = 1.5) and (c) gold (optical
data from Ref. [58]). The force is calculated both with Maxwell’s stress tensor (full black line) and with the spherical moments (thick dashed
blue line). Also shown is the decomposition of the multipolar optical force into its components F (full colored lines) and Fj,, (thin dashed

lines) using the spherical moments.

and another term Fj,; representing the interaction between the multipoles themselves:

4 5 5 7
k
Fi = — Re(P® x M5*) — Im(P% - EQ%*) — ————Im(M° - MQ%*) — Im(EQ® : EQ%*
' 12megc e(P” x ) 407 €g m( =Q ) 407 €y m( :Q ) 6307 €g m(=Q = )
7 6

Im(MQ* : MO™) -

6307 €oC 240 ege

with B being the incident magnetic induction field and *
indicating the complex-conjugate operation [29,57]. EQf =
(EQS.EQS EQS), similarly for EQ$, EQ} and their mag-
netic counterparts. We now use these expressions to calculate
the force acting on spheres of radius rp = 100 nm made of
different materials under the influence of a field with ampli-
tude of 1 V/m. The results are shown in Fig. 7, where the
z component of the total force, together with its multipolar
decomposition, is plotted for a semiconductor, a dielectric, or
a metallic sphere. This force represents the radiation pressure
acting on the particle and is the only force present in the
system. We note that, due to the different conventions used
to derive Egs. (12) and (13) and the spherical moments, the

Re(EQ] x MQJ* + EQ§ x MQg* +EQ} x MQY¥),

13)

(

spherical quadrupoles need to be divided by three in order
to be used to calculate the multipolar force. For the force
acting on the amorphous silicon sphere, shown in Fig. 7(a),
we see that the magnetic and electric dipolar forces dominate
the response of the system roughly until kry >~ 0.8, i.e., for
A > 8rg. At shorter wavelengths, until krop >~ 2 or A =~ 3r,
the magnetic and electric quadrupolar responses need also to
be considered to properly characterize the force. For larger
size parameters, the electric octupolar force prevails, while the
magnetic octupolar response remains negligible. Generally,
the smaller the wavelength the more multipoles are excited
in the particle, making it harder to single out a dominant
contribution from a single multipole. For the dielectric sphere
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TABLE I. Approximate threshold values inferred from Fig. 7 for
three different materials, for the onset where quadrupolar and octupo-
lar forces need to be included in the multipolar force calculations.

Quadrupolar Octupolar
Material kry A kry A
Amorphous silicon 0.8 8ro 2 3ry
Glass 1.5 4ry 2.5 2.5r
Gold 1 67 0 2 3r 0

case shown in Fig. 7(b), the electric rather than the magnetic
dipolar force is first generated at small kry. These dipolar
forces dominate the response of the particle until krg ~ 1.5, or
for A > 4ry, when quadrupole moments are then also excited.
Moreover, for krg > 2.5, i.e., A < 2.5r¢, both the electric and
magnetic octupolar forces need to also be included in the
calculations. For the metallic particle in Fig. 7(c) we see
that, as expected, the magnetic response is weaker than in the
other materials and the electric dipolar force dominates until
kro ~ 1, or for A > 6ry, after which the electric quadrupole
and the magnetic dipole come into play. Octupolar forces start
to be relevant for krg > 2,1.e., A < 3ry. Similarly to what was
reported by Wiscombe for the Mie series [59], we provide in
Table I a guide to judge the correct number of multipoles to
consider when performing multipolar optical force calcula-
tions. For example, when looking at the amorphous silicon

case, one can see that quadrupolar contributions to the optical
force emerge at kro > 0.8 or A < 8ry, while octupolar forces
start to play a role after krg > 2 or A < 3ry.

V. CONCLUSIONS

We have briefly reviewed the definition and derivation of
the primitive and irreducible Cartesian moments and of the
spherical multipoles, and used them to perform multipolar
scattering cross section and optical force calculations. It is
clear from this analysis that, especially when the size of the
material system is comparable to the wavelength, the use of
Cartesian multipoles should be abandoned in favor of the
spherical ones. These clearly outperform the Cartesian ones
and provide an exact description of the scattering process at
any wavelength considered. We also performed a full mul-
tipolar decomposition of the optical force up to very large
size parameters, providing valuable physical insights into the
mechanism of force generation. Finally, we also provided a
guide to determine, depending on the working wavelength,
how many multipoles orders need to be considered when
performing optical force calculations, providing a helpful ref-
erence for future works on the topic.
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