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A B S T R A C T   

Nanofabrication is key to many technological advances, especially the challenge of merging nanophotonics with 
electronics. Here, we investigate the fabrication process of plasmonic interdigitated gold electrodes having a very 
high aspect ratio (i.e. long and thin geometries) and a large surface area. Stringent stability issues that arise when 
these structures are fabricated using inorganic adhesion layers, such as titanium or chromium, on silica sub
strates are highlighted. We ascribe these problems to thermodynamical non-equilibrium states of freshly 
deposited gold and, in particular, discuss the role of surface energy in determining the structural properties of 
high aspect ratio gold nanostructures. We then show that the use of organic silane self-assembled monolayers 
improves the long term stability of these structures and, finally, characterize the fabricated electrodes. This 
technology can unleash the potential of hybrid optoelectronic circuits where current and light are manipulated 
with the same component.   

1. Introduction 

The continuous evolution of nanofabrication techniques in the past 
decades has enabled the controlled fabrication of devices with sub-100 
nm features, allowing the investigation and control of physical phe
nomena at the quantum level and the nanoscale [1]. Arguably, the field 
that has benefited most from this miniaturization trend is electronics, 
where the number of electronic components on a single chip has steadily 
increased over the years [2], as anticipated by Moore. Consequently, 
longer and narrower interconnections are now required to join different 
active components located on the same substrate [3–5], and to interface 
these devices with the macroscopic world. Combining long and narrow 
intrinsically goes along with increasing the surface to volume ratio of the 
nanoscale structures [6,7] and makes properties such as interfacial 
adhesion, surface energy and diffusion of key importance. Parallel to 
this, there is an ongoing trend to integrate electronic and photonic ca
pabilities into a single component that would outperform conventional 
semiconductor devices [8–10]. In particular, plasmonic electrodes are 
set to become a key component of future optoelectronic circuits thanks 
to their ability to both carry electronic signals and manipulate optical 
radiation [11]. The mutual coupling between the constituents of these 
complex systems gives rise to unexpected optical properties [12,13], 
offering compelling platforms for signal processing [10,14–16], 

biosensing [17,18] and hot-electron chemistry [19,20], to name a few 
examples. In this context, reliable fabrication strategies of high aspect 
ratio metallic nanowires are in strong demand. Among other metals, 
gold (Au) has found wide reaching applications in both electronics and 
plasmonics thanks to its high electrical conductivity and chemical sta
bility, together with the ability to generate a plasmonic response in the 
visible and near infrared range [21–24]. Unfortunately, the fabrication 
of elongated gold nanostructures having extremely high surface to vol
ume aspect ratios is a challenging task. On gold, surface self-diffusion 
occurs even at room temperature and, as a consequence, a gold nano
structure tends to spontaneously change its shape towards configura
tions with lower free energy and, hence, with a smaller surface [25–27]. 
In particular, freshly deposited gold thin films are especially unstable 
since they are in a partially amorphous phase [28,29]. This state, com
bined with a large surface and, hence, a high surface energy, is ther
modynamically unfavorable, which further enhances surface diffusion. 
In addition, when working with gold films deposited on silica substrates, 
one has to also consider the adhesion between these two materials [30], 
which is neither mediated by strong chemical binding – since gold oxide 
is very unstable – nor by diffusion – as bulk diffusion is relatively low at 
room temperature [31]. Formally, good adhesion implies 

γs/Au + γAu/v < γs/v, (1) 
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where γs/Au is the interfacial energy of the substrate / gold interface, 
while γs/v and γAu/v are, respectively, the surface energies of the substrate 
and the metal towards vacuum [32,33]. Clearly, an increase in γs/v 
through the deposition of an adhesion layer favors the wetting of the 
substrate by the gold. Traditionally, good adhesion can be achieved by 
introducing a layer of titanium (Ti) or chromium (Cr) between the gold 
and the silica, leading to a thermodynamically downhill reaction with 
negative enthalpy of formation [34]. Higher γs/v are generally achieved 
with more compact adhesion layers, supporting the common belief that 
thicker layers result in an enhanced adhesion between two materials due 
to a denser surface coverage. Interestingly, this conclusion has been 
challenged recently, where the diffusion of adhesion layer material into 
the gold layer has been shown to deteriorate its structural properties and 
its adhesion to the substrate [35,36]. With an eye on applications, one 
also has to consider that, regardless of their thickness, metallic adhesion 
layers have detrimental effects on the optoelectronics properties of 
metallic nanostructures, generally leading to an increase of their electric 
resistance and, consequently, to a widening and redshift of their plas
monic resonances [35–42]. The use of metallic adhesion layers is 
therefore not ideal for the fabrication of plasmonic structures with su
perior optoelectronic properties. On the other hand, different authors 
have reported the facile integration of molecular self-assembled mono
layers (SAMs) into top-down techniques for the creation of organic 
adhesion layers [43–46] and, interestingly, their inkjet printing [47,48] 
and patterning [49–52]. Thanks to its molecular thickness, a SAM in
duces only a slight redshift of the plasmonic resonances, while the gold 
is anchored to the substrate through a series of covalent bonds that 
provide a strong adhesion. To this end, the ability of a thiolated sub
strate to spontaneously form covalent bonds with gold greatly decreases 
γs/Au and leads to a better wetting than when employing metallic 
adhesion layers. As a consequence, organic adhesion layers support gold 
films with exceptional structural and optical properties [53–56] and 
represent promising alternatives to the use of metallic adhesion layers. 

In this work, we fabricate plasmonic interdigitated gold electrodes 
with extremely high aspect ratios on silica substrates and explore, both 
experimentally and through the development of an empirical model, the 
influence of different inorganic and organic adhesion layers on their 
long term stability. First, we unveil the thermodynamic instability of 
freshly deposited gold nanostructures. Second, we stabilize them by 
using inorganic adhesion layers and subsequently demonstrate the 
benefits of employing organic layers to counteract the adverse action of 
surface forces. In particular, we will show how these high aspect ratio 
gold nanostructures can only be successfully fabricated with the use of 
organic adhesion layers. This is different from the case of low aspect 
ratio nanostructures where, thanks to a lower surface area, surface ef
fects are minimized to the point that these structures can be readily 
fabricated with either organic or thin inorganic adhesion layers [44]. 
Finally, we demonstrate the utilization of such plasmonic electrodes for 

spectroscopic and electronic experiments and compare their experi
mental response with numerical calculations, before putting forth a 
semi-quantitative model that readily explains our experimental results 
in terms of change in the surface energies of our system. 

2. Materials and methods 

Let us describe the fabrication process of plasmonic circular gold 
dimers with long interconnections arranged into an interdigitated 
electrode array, as shown in Fig. 1. Each finger has an average aspect 
ratio (length/width) exceeding 220, while the whole structure possesses 
a surface to volume ratio greater than 40 μm− 1, as can be readily 
calculated by considering the dimensions of the large contact gold 
stripes. The electrodes are fabricated following the electron-beam 
lithography process outlined in Fig. 2. Briefly, 4-in. fused silica wafers 
(Schott AG, 525 μm thick) are first dried under a constant nitrogen flow 
for more than one week before being further dehydrated through a 
thermal treatment on a hotplate at 180 ◦C for 5 min, in order to promote 
resist adhesion [57]. Subsequently, 120 nm of MMA EL6 (Micro-resist 
Technology GmbH) are spin-coated (ATMsse OPTIspin SB20 manual 
coater, 6000 rpm) on the wafer, followed by 60 nm of PMMA 495K A2 
(Micro-resist Technology GmbH, spin-coated at 1500 rpm). This way, 
the substrate is covered with a double layer of electron beam resist, 
which helps promoting the lift-off thanks to the formation of an un
dercut at the edges of the exposed areas after the development [58]. To 
avoid charging issues during the electron-beam exposure, a 20 nm 
conducting sacrificial layer of Cr is further evaporated on the resist 
(Alliance-Concept EVA760) and removed in a (NH4)2Ce(NO3)6 + HClO4 
solution (TechniEtch Cr01 from MicroChemicals) after the exposure. 
This is carried out with a Raith EBPG5000+ system at a 100 kV accel
eration voltage, with varying beam doses between 500 and 1000 μC/cm2 

and beam currents ranging from 200 pA to 100 nA. After the Cr removal, 
the resist is developed in a MiBK:IPA 1:3 developer solution during 1 
min under continuous circular agitation, rinsed for 1 min with isopropyl 
alcohol (IPA) and dried with a nitrogen gun. To fabricate the electrodes 
using inorganic adhesion layers, an 8 s. oxygen plasma treatment is 
applied to remove the residuals of undeveloped resist (Oxford PRS900, 
300 sccm, 2 Torr, 500 W RF power) and to activate the surface for an 
improved adhesion. The same machine (Leybold Optics LAB600H) is 
then used to evaporate both the Ti or Cr adhesion layer and the gold film 
(thickness: 40 nm, deposition rate: 0.5 Å/s), without breaking the vac
uum between the consecutive evaporations. For an organic adhesion 
layer, after developing the resist the substrate is first exposed to an ox
ygen plasma (Oxford PRS900, 300 sccm, 2 Torr, 500 W RF power) for 40 
s. This longer plasma treatment, compared to the one used for inorganic 
adhesion layers, ensures both the removal of undeveloped resist and the 
creation of hydroxyl groups, needed for a proper silanisation, on the 
silica areas of interest. The sample is then readily placed for 10 h into a 
vacuum desiccator together with a vial containing (3-Mercaptopropyl) 

Fig. 1. Sketch of the design under 
study. On the left, the full interdigitated 
geometry is shown, where the fingers of 
the gold electrodes are seen extending 
from larger contact gold stripes (1 μm 
× 1.2 cm) that allow for external elec
trical connection. The distance between 
adjacent fingers is 5 m. The central 
panel shows a magnified view of one 
electrode pair and shows how each 
finger is composed of two connected 
successive sections (first 150 nm wide 
× 20 μm long followed by 70 nm wide 
× 5 μm long). At their extremity, these 
are joined to a 140 nm diameter disk, as 

displayed in the rightmost panel. The gap between two adjacent disks is 30 nm. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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trimethoxysilane (MPTMS, 95%, from Merck, used as received). The 
released MPTMS molecules, shown in Fig. 3(a), adsorbe on the sample, 

where the silane groups of the molecules establish weak hydrogen bonds 
with the hydroxyl groups present on the available glass surface. To 
stabilize the silane-glass bond, the sample is subsequently baked for 20 h 
at 80 ◦C, allowing the MPTMS to form siloxane bridges with the sub
strate and cross-link with adjacent molecules. The temperature is kept at 
80 ◦C in order to prevent the destruction of the nanostructures shaped in 
MMA/PMMA, which has a glass temperature of about 110 ◦C [59,60]. 
Afterwards, 40 nm of gold are evaporated on the sample (Leybold Optics 
LAB600H, deposition rate: 0.5 Å/s), where the metal atoms covalently 
bind to the available thiol groups of the SAM as shown in Fig. 3(b). After 
the gold film deposition, an extra stabilizing baking step is performed at 
80 ◦C for 24 h. Finally, regardless of the type of adhesion layer used, the 
resist is stripped by immersing the sample into an acetone bath for 24 h. 
Prior to the SEM characterization (ZEISS Merlin), 1.5 nm of Cr are 
sputtered (Alliance-Concept DP650) onto the sample to avoid charging 
during imaging. 

The optical characterization of the plasmonic electrodes is carried 
out on an Olympus IX73 inverted microscope setup. Briefly, with the 
help of a custom-made dark-field condenser, the white light from a 
halogen lamp is focused on the sample and a 60×/0.7 Olympus LUC
PlanFLN objective is used to collect the forward scattered light. This is 
normalized with respect to the spectrum of the lamp and analyzed with 
the help of an Andor Kymera 328i-A spectrograph equipped with a 
Newton 920 CCD detector purchased from Andor. The electrical char
acterization is carried out on a commercial probe station from Cascade 
Microtech, while the data is analyzed with a Keithley 4200A-SCS 
parameter analyzer. These measurements were taken in air atmo
sphere at room temperature. To ease the characterization of the elec
trodes, after the lift-off a 2.5 μm protective layer of photoresist (AZ 1512 
HS) is spincoated (1000 rpm, followed by a 2 min baking at 107 ◦C) on 
the wafers before these are diced into chips using a Disco DAD321 
automatic dicing saw machine (25,000 rpm, cutting speed of 1 mm/s). 
The resist is then stripped with acetone and IPA right before the mea
surements are performed. 

3. Results and discussion 

Let us now delve with more detail into the fabrication process of 
plasmonic gold electrodes on silica substrates employing inorganic and 
organic adhesion layers, before describing a semi quantitative model 
that fully explains our experimental observations. 

3.1. Inorganic adhesion layers and surface effects 

At first we discuss the configuration with a 3 nm Ti adhesion layer. 
Fig. 4(a) displays the SEM images of the fabricated structures recorded 
within 30 min after the lift-off step and demonstrate a successful 

Fig. 2. Process flow for the fabrication of the structures.  

Fig. 3. (a) Structural formula of a MPTMS molecule. (b) Process flow for the 
realization of a surface functionalization to enhance gold adhesion with a SAM. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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fabrication of both the plasmonic disks and the long connecting rods, 
albeit with a significant roughness for the latter. Interestingly however, 
after the sample is stored for more than three hours under cleanroom 
conditions, one can see from Fig. 4(b) that most of the fabricated 
structures are destroyed. In particular, the gold diffuses over the silica 
surface and reorganizes into spherical aggregates. To this regard, the 
diffusion of gold on a glass substrate is not surprising, as the small 
enthalpy of formation of gold oxide hampers the creation of a stable 
metal-oxide interface and prevents proper wetting of the silica by the 
metal [34]. As a consequence, surface diffusion sets in and the gold 
accumulates in spherical particles, since such a shape provides the 
lowest surface energy for a given volume [25,34,61]. However, the 
ability of gold to diffuse despite the underlying Ti adhesion layer is 
surprising since, as we show in the Supporting Information with the help 
of contact angle measurements, Ti locally increases the substrate surface 
energy promoting wetting of gold and counteracting surface diffusion. 
The gold is further anchored to the substrate likely thanks to the 
establishment of Ti–Au bonds [62,63]. In this configuration, the gold is 
usually tightly anchored to the glass substrate and can even be exposed 
to a variety of different gaseous and liquid environments without 
altering its shape [64–66]. Obviously, this thermodynamic stability 
breaks down for configurations having adversely high surface energies 
and high aspect ratios such as the one reported here. Similar behaviours 
have been observed for heated low aspect ratio gold nanorods, which 
change shape and transition to a sphere in a surface-driven reorgani
zation process [29,67–71]. However, we can safely exclude the presence 
of any thermal effect in our system, as all the samples are stored at room 
temperature. On the other hand, comparing with two other commonly 
used plasmonic metals such as silver and aluminum, we see that they 
both require specific fabrication processes when deposited onto silica 
[33,57]. The case of silver is particularly interesting in this context, as it 
belongs to the same group as gold in the periodic table and, therefore, 
shares with it some common chemical properties such as a low adhesion 
energy on glass, which manifests itself in an enhanced surface diffusion 

already at room temperature [33,34,57]. We hypothesize that standard 
thin inorganic adhesion layers provide enough surface energy to prop
erly stabilize gold nanostructures having low aspect ratios. On the other 
hand, structures with larger aspect ratios possess extensive surface 
areas, resulting in higher surface energies. These configurations, such as 
the one reported here, can become thermodynamically unstable up to 
the point where surface effects begin to dominate their stability [72] and 
surface diffusion sets in. When this happens, the system evolves towards 
a more favourable thermodynamic state with a smaller surface area, as 
can be noticed when comparing Fig. 4(a) with Fig. 4(b). In this case, 
similarly to what happens with low aspect ratio silver structures [33], 
improved adhesion layers can prevent the detrimental surface diffusion 
of gold, revealing how the controlled modification of the metal-oxide 
interface is a key criterion to stabilize high aspect ratio gold struc
tures. As an additional evidence, we show in the Supporting Information 
that such high aspect ratio plasmonic structures can be readily fabri
cated using aluminum, which easily forms a stable metal-oxide interface 
with the glass substrate that leads to a much higher adhesion energy 
[34]. 

We therefore tested different treatments to modify the metal-oxide 
interface, with the objective of preserving the shape of the structures. 
In particular, we fabricated large area interdigitated electrodes using Ti 
and Cr adhesion layers of various thicknesses – namely 3 and 10 nm – as 
shown in Fig. 5. The structures fabricated using 3 nm adhesion layers 
were completely destroyed within one day after their fabrication. The 
better results achieved with 3 nm Cr layers, compared to 3 nm Ti layers, 
can be attributed to the more favourable enthalpy of formation of 
chromium oxide compared to that of titanium oxide, which results into a 
better chromium bonding to the substrate and into a higher diffusion of 
Cr into gold [63]. On the other hand, as we also discuss in the Supporting 
Information, the use of 10 nm adhesion layers greatly increases the 
substrate's surface energy thanks to a better coverage, resulting in a 
better bonding between the silica and the gold structures and in an 
improved long term stability. However, we show in the Supporting 

Fig. 4. SEM images of the interdigitated electrodes, with an underlying 3 nm Ti layer, recorded (a) 30 min after the lift-off and (b) more than three hours later.  
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Information that further processing of the wafers, notably dicing them 
into chips for optoelectronic measurements, can easily damage the 
electrodes, making them not suitable for practical applications. More
over, as mentioned in the Introduction section and confirmed in the 
Supporting Information with the help of numerical simulations, 10 nm 
thick metallic adhesion layers significantly alter the plasmonic proper
ties of the electrodes [44], notably by increasing their losses [73,74], 
and are therefore not suitable for the fabrication of plasmonic structures. 
To this end, different strategies have been proposed to minimize these 
harmful effects, but they all require the use of special geometries [75] or 
dedicated tools, such as for example cryogenic equipment [76], which 
are not commonly found in standard micro/nanofabrication facilities. 
With the idea of developing a simple and accessible fabrication process, 
we thus explored the use of molecular monolayers to covalently attach 
the gold electrodes to the silica substrate while, at the same time, 
keeping their optical properties unaffected. 

3.2. Organosilane adhesion layer 

The self-terminating deposition of molecules on a substrate, resulting 
in the formation of a SAM, has been a subject of study for decades now 
[77,78] and different techniques have been developed to produce or
dered molecular layers for a variety of applications [79–82]. In partic
ular, MPTMS has been shown to be an appropriate molecular linker 
between gold and silica [44,45] thanks to its thiol head group that 
covalently binds to gold [83,84], while the opposite methoxy groups are 
known to hydrolyse in the presence of water and bind to hydroxyl 
groups on an activated glass surface [85]. In particular, we stress the fact 
that the fabrication process that we propose in the Methods section al
lows the creation of hydroxyl groups on the exposed areas of a silica 
surface covered with electron-beam resist, without severely damaging 

the resist layer. This is a more gentle treatment when compared to 
standard surface activation protocols employing a Piranha solution 
[45,46], which can easily dissolve the PMMA layer. Once a thin layer of 
gold is subsequently deposited on top of a MPTMS SAM grafted onto a 
glass substrate, it stably binds to the available thiol groups and attaches 
to the underlying silica surface through a series of covalent bonds, as 
described in the Methods section. In the latter, we also highlighted that a 
post-baking step, carried out after the metal evaporation, improves the 
quality and stability of the nanostructures. This additional thermal 
treatment was found to be a crucial step in the fabrication process since 
freshly deposited gold is in an unstable, partially amorphous [28], state 
and this additional baking step stabilizes the gold structures by pro
moting a transition from the as-deposited unstable gold phase to a 
thermodynamically more stable polycrystalline morphology. To this end 
we note that similar structures, albeit of lower aspect ratio, have been 
successfully fabricated in monocrystalline gold [16,86,87], hinting at 
the importance of the structural properties of the metal for its stability. 
The chosen temperature of 80 ◦C is sufficient to stimulate a reorgani
zation of the deposited gold, while preventing the destruction of the 
MMA/PMMA structures and the thermal desorption of the S atoms on 
gold, which occurs above 100 ◦C [83]. With an eye on optical applica
tions, this sets a constraint on the maximum optical power that the 
conjugated thiol‑gold system can absorb, and power densities above 1.6 
mW/μm2 in an air environment, or 11 mW/μm2 in water, are therefore 
to be avoided [88]. On the other hand, the siloxane bond is stable up 
until about 1000 ◦C [49,89,90], making the thermal desorption of the 
silane head group from the silica substrate unlikely. However, at tem
peratures above 500 ◦C the hydrocarbon chains begin to decompose into 
gaseous carbon oxides, leading to the destruction of the SAM 
[49,89–91]. In light of all this, optical characterization of the electrodes 
with continuous wave light sources having power densities in the μW/ 

Fig. 5. Optical images of the interdigitated electrodes recorded a few days after the fabrication. Different combinations of adhesion layer materials and thicknesses 
are shown (10 μm scalebars). 
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μm2 regime carries no damage to the SAM. 
Fig. 6(a) shows the nanoelectrodes fabricated with organic adhesion 

layers. One can notice that the fabricated structures have an excellent 
shape, close to the reference geometry, with remarkably smooth 
boundaries compared to those manufactured with inorganic adhesion 
layers shown in Fig. 4(a). We note that the SEM images provided here 
were recorded more than a week after the lift-off process, which con
firms how organic MPTMS adhesion layers dramatically reduce surface 
diffusion and improve the long term stability of the plasmonic elec
trodes. Further SEM and optical characterization has also shown that the 
structures remain stable up to 6 months after fabrication and can survive 
the dicing process, allowing their experimental characterization. To this 
end we provide, in Fig. 6(b), the measured optical and electronic re
sponses of the plasmonic electrodes. In particular, the left panel of Fig. 6 
(b) shows the measured dark-field scattering spectrum of a single disk 
dimer in a water environment (n = 1.33). This clearly reveals a plas
monic dipole resonance at a wavelength around 1000 nm, which is in 
good agreement with the simulated response calculated with COMSOL 
Multiphysics 5.6. In the right panel, the current-voltage (IV) charac
teristics of the electrodes is provided, which shows a typical resistance- 
like behaviour. The linear fit of these data demonstrates an excellent 
electrical insulation between the disks, with an open-circuit resistance of 
567 GΩ that allows the creation of electric fields with strengths up to 
1.66 ⋅ 108 V/m. These results perspicuously demonstrate the possibility 

to fabricate plasmonic nanostructures, connected to interdigitated 
electrodes, with very good optoelectronic properties, paving the way for 
the experimental study of more exotic nanophotonic and nanoelectronic 
processes [13]. However, we found it challenging to fabricate smaller 
plasmonic structures with resonances in the visible range, even when 
employing very small (< 500 μC/cm2) electron beam doses. This limi
tation presumably stems from the relatively long oxygen plasma treat
ment used to activate the silica substrate before grafting the SAM, which 
is likely to slightly etch the MMA/PMMA bilayer and enlarge the aper
tures in the resist mask. All in all, the procedure described here results in 
a reliable fabrication process having a yield exceeding 90%, enabling 
routine production and long term stability of the written structures. 
However, the additional baking induced some difficulties in completely 
lifting off the large areas between the electrodes, decreasing the elec
trical insulation between them. This is likely due to the removal of re
sidual solvents during the additional baking steps, altering the resist 
layers towards a more compact configuration. To this end, the creation 
of additional sacrificial apertures in the mask was found to significantly 
improve the detachment of the resist. 

3.3. Empirical model 

After showing the beneficial effects of thiolated organic layers to 
stabilize high aspect ratio gold nanostructures, we describe here an 

Fig. 6. (a) SEM images of the fabricated structures taken two weeks after the end of the fabrication process. (b) On the left, the normalized experimental dark-field 
scattering spectrum for a single plasmonic disk dimer (red) is compared to the theoretical prediction (blue). On the right, the IV characteristics of the electrodes is 
shown (red), together with its linear fit (black). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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empirical model that shines light into the role that surface energies play 
in these structures, and explains how different adhesion layers can affect 
the thermodynamic equilibrium of the system. Let us refer to Fig. 7, 
where a schematic of the mechanism leading to the destruction of the 
plasmonic electrodes is proposed. In particular, we can see that this 
process can be ideally split into two different steps. The first is shown on 
top and describes the reorganization of the gold film towards a more 
favourable configuration with reduced surface area, all while keeping 
the surface between the substrate and the vacuum As/v unchanged. The 
second mechanism, shown at the bottom of the figure, is a dewetting of 
the substrate by the gold film that occurs while maintaining the contact 
area between the gold and the vacuum AAu/v constant. We stress the fact 
that the system concurrently explores both these pathways as it relaxes 
from the initial configuration, where the gold is arranged in high surface 
area structures, to the final one, where the metal forms spherical ag
gregates on the substrate. A spontaneous evolution from the former to 
the latter case, i.e. a spontaneous destruction of the electrodes, occurs if 
the energy of the final configuration is lower than that of the initial one, 
that is if. 

dE =
dE

dAAu/v

⃒
⃒
⃒
⃒

As/v=const.
⋅dAAu/v +

dE
dAs/v

⃒
⃒
⃒
⃒

AAu/v=const.
⋅dAs/v =

= γAu/v⋅dAAu/v +
(

γs/v + γAu/v − γs/Au

)
⋅dAs/v < 0,

(2)  

where dE has been rewritten using the surface energies introduced in Eq. 
(1), shining light into the way these quantities govern the stability of our 

system. Let us start by analyzing the first term of this equation, which is 
evidently negative since dAAu/v < 0 when the system moves from a 
configuration having high surface area to one possessing a lower surface. 
This represents the main mechanism behind the reorganization of the 
gold film, which is clearly driven by a preference for smaller surface 
areas and, hence, smaller surface energies. To this end, we can write 
dAAu/v = 0.5 ⋅ V2/3 dk, where k ≥ 1 is a shape factor that characterizes 
the degree to which the area of a gold structure of volume V parts from 
its minimum value 0.5 ⋅ V2/3 that is achieved when the gold takes the 
form of a semi sphere on the substrate. Higher k implies higher surface 
and thus dk < 0 in our system, as shown in Fig. 7, with its magnitude 
increasing for initial configurations of the structure having a higher 
surface area. This explains the higher instability of high aspect ratio 
systems when compared to low aspect ratio structures. If we now 
consider the second term, we see that this is composed of three contri
butions: the first takes into account the energy to build an area dAs/v at 
the substrate / vacuum surface, the second is the energy required to 
create a similar area at the metal / vacuum surface, while the third 
represents the energy required to split the initial substrate / gold 
interface. We see that dAs/v > 0 and therefore this term generally 
counteracts the effect of the latter. This can be explained by rewriting 
dAs/v = − Lc dr, where Lc is the length of the contact line between the 
gold and the substrate and r > 0 is its distance from the center of the 
structure. Clearly, when the electrodes evolve towards a spherical shape 
the contact line shrinks, as shown in Fig. 7, making dr < 0 and conse
quently dAs/v > 0. As for the surface energy associated to this term, it can 
be easily appreciated now how the increase in γs/v brought about by the 

Fig. 7. Schematic of the process leading to the spontaneous destruction of the electrodes. The changes k → k’ and r → r’ of the parameters describing the geometry of 
the structure is shown for each mechanism. The bottom SEM images of Fig. 4, representing the initial and final state of the process, are also reproduced here for 
convenience. 
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deposition of a thick inorganic adhesion layer can make this term big 
enough to yield dE > 0 and completely stabilize the structures. On the 
other hand, we have shown in the Supporting Information that an 
MPTMS adhesion layer actually decreases γs/v and does therefore not 
ensure proper wetting of the silica by the gold. However, when this 
metal is deposited on an organic layer that exposes thiol groups at its 
surface, these spontaneously bind to gold releasing an energy equal to 
the enthalpy of adsorption ΔH ≃ -80 kJ/mol of this process [92,93]. This 
chemical contribution to the thermodynamic stability of our system is 
neglected in the above discussion, but needs to be fully accounted for to 
thoroughly describe our structures. To this end, we can express the total 
interfacial energy at the thiolated substrate / gold interface as the sum of 
a pure surface term and a chemical term: 

γs/Au = γS
s/Au + γC

s/Au, (3)  

γC
s/Au = ΔHϕ, (4)  

where γs/Au
S is the (positively defined) surface energy originating from 

the energy difference between surface and bulk molecules, while γs/Au
C is 

the energy required to form S–Au bonds at the surface, expressed 
through the molar surface density of thiol groups ϕ. Clearly, γs/Au

C < 0 and 
it is therefore possible, when ∣γs/Au

C ∣  > γs/Au
S , for the total interfacial 

energy γs/Au to be negative. In such a case, the magnitude of the second 
term in Eq. (2) becomes larger and contributes to the lowering of the 
overall surface energy of the system having elongated gold structures, 
which is now more thermodinamically stable than that with low surface 
area electrodes. In practice, this situation arises only if the silica surface 
presents a sufficient number of thiol groups that can bind to the gold, i.e. 
if ϕ is high enough. Assuming a complete monolayer formation, this 
parameter can be estimated by referencing to Fig. 3(b), where it is 
shown that for every two silicon atoms on the substrate there is one 
corresponding thiol group at the surface. From the density (ρ = 2.196 g/ 
cm3 [94]) and molecular weight (w = 60.08 g/mol) of silica, one can 
estimate the number of molecules of silica inside a cubic centimeter of 
material as NAρ/w and, therefore, their surface density as (NAρ/w)2/3 – 
with NA being Avogadro number. The final molar surface density of thiol 
groups is then simply ϕ = 0.5 ⋅ (NAρ/w)2/3/NA = 6.52 ⋅ 10− 10 mol/cm2. 
We can finally infer that, for the system under study, γs/Au

C = -52.2 μJ/ 
cm2 = -522 mJ/m2. This value is about one order of magnitude greater 
than those of typical γs/Au [32], and therefore explains the enhanced 
stability of the gold structures fabricated on thiolated adhesion layers. 
With an eye on Eq. (1), this higher stability stems not from an increased 
γs/v, as is the case for metallic adhesion layers, but rather from the for
mation of a stable chemical interface between the gold and the substrate, 
which is equivalent to decreasing γs/Au. On the other hand, this is not the 
case for the inorganic adhesion layers studied here, where the lower 
enthalpy of formation of Ti-Au and Cr-Au bonds provide a less stable 
binding of the gold to the substrate [95,96]. Moreover, the low surface 
coverage and high oxidation state of these layers greatly reduce the 
number of Cr or Ti atoms available to bind to the gold, i.e. ϕ, and 
therefore make the contribution of γs/Au

C negligible in these systems. 

4. Conclusions 

The downscaling and merging of optical and electronic technologies 
often requires structures with very large surface to volume ratios. For 
such devices, surface effects become the dominant interaction and limit 
their stability and robustness. In this work, we have confirmed that these 
effects are especially prominent for high aspect ratio gold nano
structures and are responsible for their structural degradation shortly 
after their fabrication. We have demonstrated how the quality and long 
term stability of such structures can be improved by enhancing their 
adhesion to the substrate and shown the benefits of employing organic 
silane adhesion layers to establish strong binding forces between the 
metal and the underlying surface, without affecting the optical 

properties of the device. Furthermore, we have shown how an additional 
baking favors the reorganization of the gold from a freshly deposited – 
thermodynamically unstable – morphology towards a more stable 
configuration. Surface diffusion can be dramatically reduced by carrying 
out the baking prior to the lift-off procedure since the metal remains 
confined within the PMMA mold. These findings enable the fabrication 
of plasmonic devices with extremely high aspect ratios, which are likely 
to play a major role in emerging signal processing and quantum tech
nologies since they provide a bridge to connect the nano- to the mac
roscales, as well as the photonic to the electronic worlds. 
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