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Extension of Lorentz reciprocity and Poynting theorems for spatially dispersive media
with quadrupolar responses

Karim Achouri* and Olivier J. F. Martin†

Nanophotonics and Metrology Laboratory, Department of Microengineering, École Polytechnique Fédérale de Lausanne,
Route Cantonale, 1015 Lausanne, Switzerland

(Received 30 March 2021; accepted 4 October 2021; published 28 October 2021)

We provide a self-consistent extension of the Lorentz reciprocity theorem and the Poynting theorem for media
possessing electric and magnetic dipolar and quadrupolar responses related to electric and magnetic fields and
field gradients thus corresponding to weak spatial dispersion. Using these two theorems, we respectively deduce
the conditions of reciprocity and gainlessness and losslessness that apply to the various tensors mediating the
interactions of these multipole moments and the associated fields and field gradients. We expect that these
conditions will play an essential role in developing advanced metamaterial modeling techniques that include
quadrupolar and spatially dispersive responses.
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I. INTRODUCTION

The expansion of the electromagnetic fields induced by
charges and current distributions in terms of multipolar mo-
ments plays an essential role in studying the interactions of
light with matter [1,2]. It has been widely used, for instance,
in the electromagnetic characterizations of cubic and nonmag-
netic crystals [3–5] and the studies of optical effects such
as optical activity and circular birefringence in chiral media
[6]. Historically, these studies have shown that, while dipolar
approximations may be sufficient in some cases, it is often
necessary to extend the multipolar expansion to higher order
terms, such as quadrupoles or even octupoles, in order to prop-
erly assess the electromagnetic properties of the considered
structures and model their optical response [3–6].

In more recent years, we have witnessed the advances in
the field of metamaterials and metasurfaces research that have
led to a myriad of concepts and applications [7–12]. In the
case of metasurfaces, most of the design and modeling tech-
niques that pertain to their synthesis and analysis are almost
entirely based on dipolar approximations, since the scattering
particles that compose them are small enough compared to the
wavelength such that dipolar approximations are sufficient to
model their responses [13–15]. However, the extreme number
of degrees of freedom enabled by the ability to engineer
the metasurface scattering particles may be leveraged to in-
duce non-negligible higher order multipolar components for
additional field control capabilities, the necessity to control
the angular scattering response of metasurfaces for analog
signal processing and the fact that dielectric metasurfaces
are composed of dielectric resonators that are electrically
large enough to exhibit at least electric quadrupolar responses
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prompt the need to improve the existing modeling techniques
by including higher order multipolar components [16–25].

However, the theoretical expressions derived in
Refs. [1–5,26] have been limited to rather few multipole
moments and related field interactions. Moreover, in these
studies, the permutation symmetries that are associated
to quadrupolar components, and which correspond to
reciprocity conditions, have only been derived based on
quantum mechanical concepts [1–5,26].

In this work, we shall overcome these limitations by
providing a multipolar expansion that includes electric and
magnetic dipolar and quadrupolar moments with components
related to the electric and magnetic fields as well as their first
order derivatives. Additionally, we also provide the permuta-
tion symmetries that are associated to reciprocity and energy
conservation based on a purely electromagnetic derivation of
the Lorentz reciprocity theorem and the Poynting theorem.

For self-consistency, we shall first review the fundamental
concepts of the theory of multipoles and that of spatial disper-
sion in Secs. II A and II B, respectively. Next, we derive the
Lorentz reciprocity theorem in Sec. III from which we derive
the associated conditions of reciprocity. Then, in Sec. IV, we
derive the Poynting theorem and deduce the conditions of
gainlessness and losslessness, and finally conclude in Sec. V.

II. THEORETICAL BACKGROUND

A. Theory of multipoles

The electric and magnetic responses of a material or a
medium are conventionally expressed in terms of constitutive
relations [27,28]. In this work, we will consider that these
constitutive relations are given by D and B as functions of
E and H, as it is particularly well suited for the study of spa-
tially dispersive metamaterials [18,26,29]. These relations are
generally derived from a multipolar expansion of the current
density induced in the material [27,30]. For completeness, we
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next provide a brief derivation of this multipolar expansion.
We emphasize that several fundamental concepts related to the
theory of multipoles are purposefully omitted in the upcoming
discussion for briefness and we direct the interested readers to
the extensive explanations provided in Refs. [1,26,29,30].

The typical procedure to expand the electric current density
J in terms of multipoles is to start from the definition of the
vector potential A from which the magnetic field is defined as
B = ∇ × A and that is given by [27,30]

A(r) = μ0

4π

∫
J(r′)

e− jk|r−r′ |

|r − r′| dV ′, (1)

where k = 2π/λ0 and the time-harmonic e jωt is assumed but
omitted throughout [31]. Using a Taylor expansion [32], the
free-space Green function in (1) is expanded into

e− jk|r−r′ |

|r − r′| =
∞∑

n=0

1

n!
(−r′ · ∇)n e− jkr

r
. (2)

Substituting (2), truncated at n = 2, into (1) yields [30]

A(r) = μ0

4π

[(∫
J(r′) dV ′

)
−

(∫
J(r′)r′ dV ′

)
· ∇

+ 1

2

(∫
J(r′)r′r′ dV ′

)
: ∇∇

]
e− jkr

r
. (3)

We next highlight the fact that the dyadic defined by J(r′)r′
in (3) may be decomposed into symmetric and antisymmetric
parts, respectively, as

J(r′)r′ = 1
2 [J(r′)r′ + r′J(r′)] + 1

2 [J(r′)r′ − r′J(r′)], (4)

which plays an important role in simplifying (3) for the fol-
lowing steps.

The integrals in brackets in (3) can now be individually
associated to specific multipole moments. By using (4), we
thus define the electric dipole p, the magnetic dipole m, the
electric quadrupole q, and the magnetic quadrupole s as [4,26]

pi = 1

jω

∫
Ji dV, (5a)

mi = 1

2

∫
(r × J)idV, (5b)

qi j = 1

jω

∫
Jir j + Jjri dV, (5c)

si j = 2

3

∫
(r × J)ir j dV, (5d)

where the Einstein summation convention over repeated in-
dices is assumed. Note that the term J(r′)r′r′ in (3) is
conventionally split into the magnetic quadrupole moment si j

and into the electric octupole moment, which is intentionally
omitted here.

We are next interested in the case of a bulk homogeneous
medium assumed to be of infinite extent that, when excited
by an electromagnetic field, exhibits a given distribution of
current density. This bulk medium may be decomposed into
deeply subwavelength subvolumes [33], of volume Vsub, for
which we may individually compute the corresponding multi-
pole moments by evaluating the integrals in (5) over Vsub. We

may now express the distribution of current density of the bulk
medium in terms of the multipole moments as [1,26,29,30]

J = jωP + ∇ × M − jω

2
∇ · Q − 1

2
∇ × (∇ · S), (6)

where P = p/Vsub, M = m/Vsub, Q = q/Vsub and S = s/Vsub

are spatially varying functions corresponding to dipolar and
quadrupolar densities.

The constitutive relations of that medium may now be
derived by considering the frequency-domain Maxwell equa-
tions, expressed in terms of the fundamental fields E and B
[4,27], given by

∇ × E = − jωB, (7a)

∇ × B = μ0(J + jωε0E). (7b)

Substituting (6) into (7b) and rearranging the terms yields

∇ ×
(

μ−1
0 B − M + 1

2
∇ · S

)
= jω

(
ε0E + P − 1

2
∇ · Q

)
.

(8)
We may now associate the first bracket in (8) to H and the
second one to D as

D = ε0E + P − 1

2
∇ · Q, (9a)

H = μ−1
0 B − M + 1

2
∇ · S. (9b)

Since, in this work, we are interested in expressing the
constitutive relations in terms of D and B, we deduce from (9)
that the constitutive relations may be alternatively expressed
as

D = ε0E + P − 1

2
∇ · Q, (10a)

B = μ0

(
H + M − 1

2
∇ · S

)
, (10b)

which we will now use as the de facto constitutive relations
for the upcoming derivations.

B. Spatial dispersion

Spatial dispersion describes the spatially nonlocal nature
of electromagnetic material responses [26,34]. It implies, for
instance, that the electric current density J may be expressed
as the convolution of an exciting electric field E with the

current response of the material K as [26,34]

J(r) =
∫

K (r − r′) · E(r′) dV ′. (11)

We shall now approximate this expression by expanding the
electric field as [35]

E(r′) = E(r) + (r′ − r) · ∇E(r) + 1
2 [(r′ − r) · ∇]2E(r),

(12)
which, upon insertion in (11), yields [1,26,29,30]

Ji = bi jE j + bi jk∇kE j + bi jkl∇l∇kE j, (13)

where the rank-2 tensor bi j = ∫
K (r − r′)dV ′, the rank-3 ten-

sor bi jk = ∫
K (r − r′)(r′ − r)dV ′, and so on. Expression (13)
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shows that the induced current is nonlocally related to the
exciting electric field via its spatial derivatives, which is the
origin of spatial dispersion. This ultimately leads to material
parameters that depend on the direction of wave propagation
[26,29].

It is particularly important to note that the terms related
to the derivatives of the electric field in (13) may be trans-
formed to make the magnetic field H appear. Indeed, consider,
for instance, the second term on the right-hand side of (13),
which may be split into symmetric and antisymmetric parts
as bi jk = bsym

i jk + basym
i jk . Then, considering that an antisymmet-

ric third-rank tensor may be represented by a second-rank
pseudotensor implying the dual quantity basym

i jk ∝ εl jkgil [36],
where εi jk is the Levi-Civita symbol and gi j is a second-rank
tensor, we obtain

bi jk∇kE j = (
bsym

i jk + basym
i jk

)∇kE j,

=
(

bsym
i jk + j

ωμ0
εl jkgil

)
∇kE j,

= bsym
i jk ∇kE j + gi jHj, (14)

where we have used the fact that in vacuum (7a) may, using
B = μ0H, be written as εi jk∇kE j = − jωμ0Hi. Relation (14)
shows that the dependence of J on the magnetic field is on
the same order as its dependence on the first order derivative
of the electric field. Similarly, the last term in (13) may be
transformed into two terms, one related to the first derivative
of H and one to the second derivative of E [26].

From a general perspective, the convolution (11) and its
expansion (13) may also be performed for any of the multipole
moments in (5) [18,26]. Accordingly, we now expand these
quantities in terms of the electric field, the magnetic field, and
their first order derivatives, which leads to⎛

⎜⎝
Pi

Mi

Qil

Sil

⎞
⎟⎠ = χ ·

⎛
⎜⎝

Ej

Hj

∇kE j

∇kHj

⎞
⎟⎠, (15)

where the hypersusceptibility tensor χ is given by⎛
⎜⎜⎜⎜⎝

ε0χee,i j
1
c0

χem,i j
ε0

2k0
χ ′

ee,i jk
1

2c0k0
χ ′

em,i jk
1
η0

χme,i j χmm,i j
1

2η0k0
χ ′

me,i jk
1

2k0
χ ′

mm,i jk
ε0
k0

Qee,il j
1

c0k0
Qem,il j

ε0

2k2
0
Q′

ee,il jk
1

2c0k2
0
Q′

em,il jk
1

η0k0
Sme,il j

1
k0

Smm,il j
1

2η0k2
0
S′

me,il jk
1

2k2
0
S′

mm,il jk

⎞
⎟⎟⎟⎟⎠.

(16)
Note that we have normalized each tensor in (16) so as to be
dimensionless. As can be seen, we retrieve the conventional
bianisotropic susceptibility tensors χ ee, χmm, χ em, and χme,
and a plethora of other terms relating the fields and their
gradient to dipolar and quadrupolar responses.

The hypersusceptibility tensor χ in (15) contains a total
number of 576 components. However, several of these compo-
nents are not independent from each other. Indeed, inspecting
the definition of the electric quadrupole moment in (5c) re-
veals that Qi j = Qji, which directly implies that

Qee,i jk = Qee, jik and Qem,i jk = Qem, jik . (17)

Additionally, we know that the tensors in (16), which are
related to the derivative of the electric field, are symmetric,

as demonstrated in (14). This results in the permutability of
their two last indices and thus implies that

χ ′
ee,i jk = χ ′

ee,ik j and χ ′
me,i jk = χ ′

me,ik j . (18)

The tensor Q′
ee,i jkl combines both the symmetry of Qi j , which

affects its two first indices, and the permutation symmetry
of its two last indices due to the fact that it is related to a
derivative of the electric field; we thus have that

Q′
ee,i jkl = Q′

ee, jikl = Q′
ee,i jlk = Q′

ee, jilk . (19)

Since there is no symmetry associated with the magnetic

quadrupole S or with the derivative of H, the tensors Q′
em,i jkl

and S′
me,i jkl only exhibit the partial permutation symmetries

Q′
em,i jkl = Q′

em, jikl and S′
me,i jkl = S′

me,i jlk, (20)

whereas the tensors χ ′
em,i jk , χ ′

mm,i jk , Sme,i jk , Smm,i jk , and
S′

mm,i jkl exhibit no permutation symmetry at all. Taking into
account all of these permutation symmetries, the number of
independent components in χ is reduced to 420. Note that
we are considering that the quadrupolar tensors are expressed
in their primitive form implying that the electric quadrupole
is symmetric but not traceless and the magnetic quadrupole
is traceless but has not been symmetrized. If the irreducible
(traceless and symmetrized) moments were considered in-
stead of the primitive ones, then the number of independent
elements would be smaller [1]. In addition to the symmetries
of the multipolar tensors, one should also take into account
the symmetries of the material under consideration such as,
for instance, the internal atomic symmetries of crystals [2]
or, in the case of a metamaterial structure, the symmetries
of its constitutive scattering particles [12]. These symmetries
that are associated with the physical structure itself would
further reduce the number of independent hypersusceptibility
components in (16).

III. LORENTZ RECIPROCITY THEOREM

We shall now investigate the reciprocal properties of the
tensors χ and derive the associated reciprocity conditions that
apply to its various subtensors. For this purpose, we start from
the definition of electromagnetic reaction given by [37]

〈a, b〉 =
∫

Ea · JbdV, (21)

which results from the interaction of a source a with a current
distribution Ja producing the field Ea acting, within the vol-
ume V , on a source b with current distribution Jb and electric
field Eb, as illustrated in Fig. 1.

The Lorentz reciprocity theorem then states that the
medium contained in V is reciprocal if [28,38,39]

〈a, b〉 = 〈b, a〉. (22)

Substituting (21) into (22) and using J = ∇ × H − jωD from
Maxwell equations along with (7a), yields, after rearranging
the terms, the equality [28,38,39]

〈a, b〉 − 〈b, a〉

=
∫

Ea · JbdV −
∫

Eb · JadV
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Ja

Jb

Ea

Eb

S

V

Medium

FIG. 1. Application of the Lorentz reciprocity theorem showing
two regions of a medium, possessing dipolar and quadrupolar re-
sponses, interact with each other.

=
∫

[ jω(Eb · Da − Ea · Db + Ha · Bb − Hb · Ba)

+ ∇ · (Hb × Ea − Ha × Eb)]dV = 0. (23)

This expression, combined with the constitutive relations
(10), may now be used to derive the sought after reciprocity
conditions. To do so, we next substitute (10) into (23) and pur-
posefully ignore the trivial responses related to D = ε0E and
B = μ0H and only concentrate on the dipolar and quadrupolar
terms for convenience. We also use the following identities to
simplify the quadrupolar expressions [19]

Eu · (∇ · Q
v
) = ∇ · (Q

v · Eu) −
∑

i

ûi · Q
v · ∇iEu, (24a)

Hu · (∇ · S
v
) = ∇ · (S

v · Hu) −
∑

i

ûi · S
v · ∇iHu, (24b)

where u, v = {a, b} and û1 = x̂, û2 = ŷ and û3 = ẑ. Note that
the relations in (24) correspond to the application of the Leib-
niz rule defined as ∇ j (EiQi j ) = Ei(∇ jQi j ) + (∇ jEi )Qi j .

Next, we apply the divergence theorem to the resulting
expression and, after rearranging the terms, obtain

1

2

∮
(2Hb × Ea − 2Ha × Eb

+ Q
b · Ea − Q

a · Eb − μ0S
b · Ha + μ0S

a · Hb) · dS

+ jω
∫

(Eb · Pa − 1

2

∑
i

ûi · Q
b · ∇iEa

− Ea · Pb + 1

2

∑
i

ûi · Q
a · ∇iEb

+ μ0Ha · Mb − μ0

2

∑
i

ûi · S
a · ∇iHb

− μ0Hb · Ma + μ0

2

∑
i

ûi · S
b · ∇iHa)dV = 0. (25)

Since the surface integral in (25) vanishes when taking the
surface S to infinity [19,28,38,39], we next concentrate our
attention only on the volume integral. Substituting (15) into
the integrand of this volume integral, rearranging the terms,
and keeping only those that are not redundant for briefness,
we obtain∫ [

ε0Eb
i (χee,i j − χee, ji )E

a
j

− μ0

4k2
0

(
S′

mm,kli j − S′
mm,i jkl

)∇lH
a
k ∇ jH

b
i

+ μ0H a
i (χmm,i j − χmm, ji )H

b
j

− 1

4c0k2
0

(
Q′

em,kli j + S′
me,i jkl

)∇lE
a
k ∇ jH

b
i

+ ε0

2k0
Eb

k

(
χ ′

ee,k ji − Qee,i jk
)∇iE

a
j

− 1

2c0k0
Hb

k

(
χ ′

me,k ji + Qem,i jk
)∇iE

a
j

+ 1

2c0k0
Eb

k

(
χ ′

em,ki j + Sme,i jk
)∇iH

a
j

− μ0

2k0
Hb

k

(
χ ′

mm,ki j − Smm,i jk
)∇iH

a
j

− ε0

4k2
0

(
Q′

ee,kli j − Q′
ee,i jkl

)∇lE
a
k ∇ jE

b
i

+ 1

c0
Eb

i (χem,i j + χme, ji )H
a
j

]
dV = 0. (26)

This equation allows us to straightforwardly deduce the reci-
procity conditions that the subtensors in χ must satisfy.
Indeed, since (26) must be zero far any field value, the
brackets in (26) must individually be equal to zero. This
directly leads to the conventional reciprocity conditions for
bianisotropic media, which are given by [28,38,39]

χee,i j = χee, ji, χmm,i j = χmm, ji, χem,i j = −χme, ji. (27)

The reciprocity conditions connecting the dipolar susceptibili-
ties, related to field gradients, to the quadrupolar components,
related to the fields, are [3,26]

χ ′
ee,k ji = Qee,i jk, χ ′

mm,ki j = Smm,i jk,

χ ′
em,ki j = −Sme,i jk, χ ′

me,k ji = −Qem,i jk, (28)

and those applying to the quadrupole components related to
the field derivatives read [3,26]

Q′
ee,kli j = Q′

ee,i jkl , Q′
em,kli j = −S′

me,i jkl ,

S′
mm,kli j = S′

mm,i jkl . (29)

Combining all permutation symmetries obtained in Sec. II B
with those from reciprocity reduces the number of indepen-
dent components in χ to 210.

IV. POYNTING THEOREM

We shall now derive the conditions of gainlessness and
losslessness applying to the subtensors of χ and that can
be obtained from the Poynting theorem [38]. The Poynting
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theorem may be derived by starting from the time-domain
Maxwell equation

∇ × E = −∂B
∂t

, (30a)

∇ × H = +∂D
∂t

, (30b)

and then subtracting (30b), pre-multiplied by E, to (30a), pre-
multiplied by H, which yields [40]

∇ · S = −E · ∂D
∂t

− H · ∂B
∂t

, (31)

where S = E × H is the Poynting vector.
We next develop the two terms on the right-hand side of

(31). For brevity, we concentrate our attention only on the first
term, which may be split into two equal parts and transformed,
using (10a), into

E · ∂D
∂t

= 1

2
E · ∂D

∂t
+ ε0

2
E · ∂E

∂t

+ 1

2
E · ∂P

∂t
− 1

4
E · ∂

∂t
(∇ · Q). (32)

Next, we add the self-canceling terms (P · ∂E/∂t − P ·
∂E/∂t )/2 and [(∇ · Q) · ∂E/∂t − (∇ · Q) · ∂E/∂t]/4 to (32)
and combine together terms that are similar to each other, to
obtain

E · ∂D
∂t

= 1

2

∂

∂t
(E · D) + 1

2

(
E · ∂P

∂t
− P · ∂E

∂t

)

1

4

[
(∇ · Q) · ∂E

∂t
− E · ∂

∂t
(∇ · Q)

]
. (33)

By the same token, we transform the term H · ∂B/∂t in (31),
which we then substitute, along with (33), into (31) yielding

∂w

∂t
+ ∇ · S = −1

2

(
E · ∂P

∂t
− P · ∂E

∂t

)

− 1

4

[
(∇ · Q) · ∂E

∂t
− E · ∂

∂t
(∇ · Q)

]

− μ0

2

(
H · ∂M

∂t
− M · ∂H

∂t

)

− μ0

4

[
(∇ · S) · ∂H

∂t
− H · ∂

∂t
(∇ · S)

]
, (34)

where

w = 1
2 (E · D + H · B). (35)

Relation (34) along with (35) constitute the instantaneous
Poynting theorem in the presence of electric and magnetic
dipoles and quadrupoles.

We next assume time-harmonic fields, which transforms
the time derivatives in (34) into ∂/∂t → jω, and take the
time-average counterpart [41] of (34) to obtain

∇ · 〈S〉 = ω

8
Im[2E∗ · P − 2P∗ · E + (∇ · Q)∗ · E

− E∗ · (∇ · Q) + 2μ0(H∗ · M − M∗ · H)

+ μ0(∇ · S)∗ · H − μ0H∗ · (∇ · S)], (36)

S

V

Medium

FIG. 2. Application of the Poynting theorem showing electro-
magnetic waves impinging on and being scattered by a lossless
and gainless medium possessing dipolar and quadrupolar responses.
Energy conservation requires that the energy entering V equals the
energy leaving it.

where 〈∂w/∂t〉 = 0. Finally, we integrate (36) over a volume
V and simplify the resulting expression using the identities
(24) with u, v = {∗, }, e.g. u corresponds to the complex con-
jugate operation while v performs no operation, and vice versa

and, noting that (∇ · A)∗ = ∇ · A
∗
, with A = {S, Q}, we obtain∮

〈S〉 · dS = ω

8
Im

[ ∮
(Q

∗ · E − Q · E∗

+ μ0S
∗ · H − μ0S · H∗) · dS

+
∫ (

2E∗ · P −
∑

i

ûi · Q
∗ · ∇iE

− 2E · P∗ +
∑

i

ûi · Q · ∇iE∗

+ 2μ0H∗ · M − μ0

∑
i

ûi · S
∗ · ∇iH

− 2μ0H · M∗ + μ0

∑
i

ûi · S · ∇iH∗
)

dV

]
.

(37)

Now, for the same reason mentioned in Sec. III, the surface
integral on the right-hand side of (37) vanishes when S is taken
to infinity. The conditions of gainlessness and losslessness
are now obtained from the integrand of the volume integral
in (37) knowing that it must be zero since, to satisfy energy
conservation, all the energy entering the volume V must leave
it, i.e.,

∮ 〈S〉 · dS = 0, as illustrated in Fig. 2.
After substituting (15) into (37) and selecting the terms

that must cancel each other as in (26), we obtain the desired
conditions for bianisotropic media as [34,38]

χee,i j = χ∗
ee, ji, χmm,i j = χ∗

mm, ji, χem,i j = χ∗
me, ji. (38)

The conditions applying to the third-rank tensors are then
given by

χ ′
ee,k ji = Q∗

ee,i jk, χ ′
mm,ki j = S∗

mm,i jk (39a)

χ ′
em,ki j = S∗

me,i jk, χ ′
me,k ji = Q∗

em,i jk, (39b)
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whereas those for the fourth-rank tensors read

Q′
ee,kli j = Q′∗

ee,i jkl , S′
mm,kli j = S′∗

mm,i jkl ,

Q′
em,kli j = S′∗

me,i jkl .
(40)

Comparing relations (38), (39), and (40) to the reciprocity
conditions (27), (28), and (29) reveals that these two sets
of conditions are almost identical to each other. Indeed, the
relations deduced from the Poynting theorem do not imply
additional permutation symmetries compared to those already
provided by the reciprocity conditions. Instead, they require
some tensors to be purely real and some others to be purely
imaginary for the medium to satisfy energy conservation.

V. CONCLUSIONS

We have provided a self-consistent and purely electro-
magnetic derivation of the Lorentz and Poynting theorems
and have deduced the associated conditions of reciprocity
and gainlessness and losslessness, in the presence of electric
and magnetic quadrupolar responses expressed in terms of
fields and field gradients. We expect that these conditions
will be especially useful for the developments of advanced
metamaterial and metasurface modeling techniques requiring
the presence of quadrupolar responses.
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